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Abstract

In this paper a new modeling methodology to characterize failure processes in Time-Sharing

systems due to hardware transients and software errors is presented. The basic assumption made is

that the instantaneous failure rate of a system resource can be approximated by a deterministic

function of time plus a zero-mean stationary Gaussian process, both depending on the usage of the

resource considered. The probability density function of the time to failure obtained under this

assumption has a decreasing hazard function, partially explaining why other decreasing hazard

function densities such as the Weibull fit experimental data so well. Furthermore, by considering the

Operating System kernel as a system resource, this methodology sets the basis for independent

methods of evaluating the contribution of software and hardware to system unreliability. The

modeling methodology has been validated with the analysis of a real system. The predicted system

behavior according to this methodology is compared with the predictions of other models such as the

exponential, Weibull, and periodic failure rate. The implications of this methodology are discussed

and some applications are given in the areas of Performance/Reliability modeling,software reliability

evaluation, models incorporating permanent hardware faults, policy optimization, and design

optimization., &
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Chapter 1
Introduction

In the early 1950's, the mathematician John Von Newmann studied problems in the design and

construction of digital computing machines. In particular, he was interested in the following problem:

assu me that one has a collection of connected elements computing and transmitting information (an

automaton) and each element is subject to eventual malfunction. Can one arrange and organize the

elements so that the output is error free for an arbitrary period of time ?

Although encouraging, experience with digital computers in the 1950's had some drawbacks. The

ENIAC (Electronic Numerical Integrator and Computer), the first electronic digital computer, had been

operating since the mid 1940's. It had 18,000 electronic tubes, each tube having an expected life of

2,500 hours [Goldstine 72]. Von Newmann later proved the feasibility of a computer with 2,500

vacuum tubes and a Mean Time Between Failures of 8 hours, by multiplexing all interconnections

14,000 times, a requirement "not wholly outside the range of our (industrial or natural) experience"

(Von Newmann 63].

The fact is that reliability was an overwhelming concern for the designers and users of first

generation computers. The components used were relays, vacuum tubes, and delay-line storage

devices. All had relatively high failure rates and were subject to transient faults. Hence, fault-tolerant

techniques were developed to cope with component unreliability. The use of parity in memories,

duplication or triplication and voting, instruction retry, and other hardware fault detection

mechanisms were familiar to the designers of those early computers.

The development of fault-tolerance was interrupted by the rather sudden appearance of

semiconductor circuits and ferrite cores as digital system components. Hardware suddenly became

so "good" that in the 1960's the responsibility of maintaining operation was relegated by default to

the system software. A typical example is the MULTICS system of M.I.T. ICorbato 741.

At present, it is clear that fault-tolerant is a desirable attribute of computing systems. The cost
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associated with a computer failure in say, a spacecraft, clearly justifies the use of fault-tolerant

t echniques. But there are many other , more trivial, applications where unreliability is undesirable. In

transaction processing systems, airline reservation systems, or even in general purpose computation

centers a system failure or "crash" is associated with a user delay to finish one or several tasks.

Unreliability of current digital computing systems does not arise from poor quality of the components

but from the continuous growth in systems size and complexity. Typical components reliability is

measured in failures per million hours. But the number of components used is usually very large and

component malfunction (either temporary or permanent) eventually leads to system failures (at least

once a day for typical Time Sharing systems). Furthermore, another factor appears now to be

specially relevant to system reliability -the correctness of the programs managing the use of system

resources, that is, software reliability.

This thesis deals with reliability characterization of digital computing systems. In particular, it is

concerned with the behavior that users will observe in their everyday use of Time Sharing systems,

and about quantifying the impact of unreliable behavior at the system level. The approach taken has

been motivated mainly by the following two facts:

* The desire to formulate a hardware/software reliability prediction model.

* The good fit of the Weibull distribution to experimentally obtained failure data of several

computing systems [McConnel 79a].

These two points deserve some more explanation.

1.1. Hardware/Software reliability prediction

The following definition has been drafted by the Software Reliability Committee of the IEEE

Reliability Society

Definition 1: A Compatible Hardware/Software Reliability Prediction Model is a
suitable interpretation of hardware and software mathematical relationships for combined
computation so as to make feasible prediction of system reliability [SRC 81]

Prediction models describe the mathematical relationships between certain system parameters. A

combined hardware/software prediction model would allow the evaluation of the impact of each

cause of unreliability on the observed behavior at the system level. Prediction models can be used to

refine a design before actually implementing it, or to optimize the policies regulating the use of

systems already operational.
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At present, no such modeling methodology'is available. As will be described in Chapter 2, current

hardware and software modeling efforts are unconnected, preventing the formulation of a unified

view of system behavior. Perhaps one of the reasons why more fault tolerance is not found in systems

today is due to this lack of cost/benefit analysis techniques.

1.2. The Weibull distribution

If the expectation of having a combined hardware/software reliability prediction model is desirable,

the findings about the Weibull distribution are intriguing. After collecting failure data from several

systems, a research group at Carnegie-Mellon University reached the following two conclusions:

* Hardware unreliability is mainly due to transients as opposed to permanent faults
[Siewiorek 78].

e The Weibull distribution fits experiniental data extremely well [McConnel 811.

The Weibull distribution was originally presented by Prof. Weibull in an article dealing with fatigue

resistance of steel (Weibull 51]. Prof. Weibull's goal was to find a single distribution of wide

applicability that would comprise other distributions as special cases. The Probability Distribution

Function (PDF) of the time to failure is given in the case of the Weibull distribution by

P(ti<r) = 1 - e (1.1)

Note that for a = 1 the Weibull distribution becomes an exponential. For a = 2 equation (1.1) becomes

the Rayleigh distribution. For a<1 equation (1.1) has a decreasing hazard function, a concept which

will be formally introduced in Chapter 3 but that can be described intuitively as follows. If h(t) is the

hazard function of a system at time t, h(t)At is the instantaneous probability of observing a system

failure on the infinitesimal interval (t,t + At). For the Weibull distribution,

h(t) = Xa (1.2)

which, for oa1 is a decreasing function of time. Similarly, for 0>1, h(t) is an increasing function of

t. (McConnel 79b] shows that the Weibull distribution with a<1 closely fits the distribution of the time

to failure of digital computing systems. Therefore, the instantaneous probability of observing a failure

in a computing system decreases as the system is operating.*

Figure 1-1 illustrates the behavior of the decreasing hazard function Weibull. The system is started

at time to and failures occur at times t1, t2.... The system is restarted immediately after each failure.
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h(t)

tot1 t2 t3

Figure 1 -1: Instantaneous probability of failure as a function of operating
time for a computing system according to the Weibuil distribution

The instantaneous probability of system failure rises after each failure and decreases from then on

until the next failure. This behavior is surprising since computers are rarely switched off, therefore not

experiencing a warm-up transient period (a possible cause of early failure). Although computer

folklore uses the words "cold start" and "warm start" to describe different software initialization

sequences, software is also believed to be temperature insensitive. Why should computing systems

exhibit such behavior?) What are the implications of such behavior?. Should all users of a computation

' center walk out of the terminal room every time that the system is restarted and come back later when

the probability of failure is sufficiently small? Or is this just a mathematical paradox irrelevant to

system characterization? All these questions will be answered in the following chapters.

1.3. Organization of the research

To quantify the impact of unreliability in a variety of situations, a compatible hardware/software '

reliability prediction model will be created. This thesis deals with the formulation of such a model, its

validation, and the main conclusions draw from its predictions.

Chapter 2 is an overview of current techniques for reliability characterization, causes of

unreliability, and existing modeling methods.

, , ,, , ,. . . . - . .
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In Chapter 3 the proposed modeling methodology is formally developed. The emphasis is on the

generality of the results obtained. It is expected that some of these results will be applicable to the

characterization of the reliability of other complex systems besides digital computers.

The results presented in Chapter 3 are specialized in Chapter 4. were a study of systems under

constant or periodic workload is made.

Chapter 5 discuses the problems associated with model validation. A real system is modeled in

detail, and the necessary techniques for measuring and estimating the required model parameters are

also given.

Chapter 6 contains a comprehensive study of the similarities and differences between the model

presented in this thesis and other modeling efforts. Numerical comparisons between predicted and

observed behavior are also given.

Chapter 7 contains some applications derived from the new modeling methodology. Several

examples are given which show how to use the model in order to optimize operational policies or

quantity the .impact of unreliability on the performance of a digital computer system. Although

through the Thesis the emphasis is on characterizing unreliability due to hardware transients and

incorrect software, an extension of the modeling methods incorporating permanent hardware faults is

also given in this Chapter.

Finally, Chapter 8 summarizes the results of the previous chapters and suggests directions for

further research.
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Chapter 2
Backg round

The different approaches traditionally used to characterize system reliability will be examined in

this chapter. After some definitions given in Section 2.1, the problem of characterizing computing

systems reliability is introduced in Section 2.2. Sections 2.3 and 2.4 describe the two major

contributions to system unreliability: hardware transients and incorrect software. The modeling

methodology presented in this thesis will be validatad with a TOPS- 10 Operating System. Section 2.5

presents the validation requirements. Amid the description of MULTICS like protection mechanisms

(of which TOPS-l10 is an example) the new modeling methodology will be presented.

2.1. Definitions

The reliability of a system is a measure of how successfully a system conforms to some

specification of its behavior. A failure is any deviation of system behavior from its specifications.

System specifications usually define the external state of the system, and failures will be detected as

anomalous external states. The following definitions apply only to operational systems, not to

systems undergoing development, debugging, or testing (this distinction is important in the case of

software reliability modeling). These definitions were first given by [Randell 78].

Definition 1 : An error is that part of the (internal) system state which is incorrect in the
sense that further processing within the specifications of use will lead to a failure.

Definition 2: A fault is the electrical, mechanical, or algorithmic cause of an error. A
potential fault is a fault that under some circumstances within the specifications of use will
cause an error.

Definition 3: A permanent hardware fault is an irreversible electrical or mechanical
cause of errors. The internal state of a system in the presence of permanent hardware
faults is continuously incorrect.

Definition 4: A transient hardware fault is a fault due to temporary environmental,
mechanical, or electrical conditions.

41
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Definition 5: A software fault is an algorithmic cause of errors.

Note that software and transient hardware faults are always potential faults since they will lead to

errors only under certain circumstances of use. For operational systems, transient hardware faults

and software faults are indistinguishable in the sense that they are irreproducible errors.

Definition 6: A system failure is the external state manifestation of an error such that
the entire computing system has to stop operating.

Since no repair takes place after system failures due to software faults or transient hardware faults,

the time of system failure is essentially equal to the system restart time. This thesis is solely concerned

in modeling hardware transient faults and software faults. Thus, the words system failure and system

restart will be used interchangeably to describe the same event in time.

2.2. The problem of characterizing system reliability

Fault-tolerance has traditionally been characterized by relatively simple functions based on strict

assumptions. The Reliability function R(t) is defined as the probability of uninterrupted operation up to

time t given that all hardware was correctly operating at time t = 0. R(t) may be used to characterize

either permanent or transient faults. The usual assumption is made that the failure rate is constant

and, for nonredundant systems, the reliability functiun becomes e , where A is is the sum of the

failure rates of all the components in the system. A very common quantitative measure is the Mean

Time To Failure (MTTF)

MTTF=o R(t) dt (2.1)

The popularity of the MTTF stems mainly from the fact that, for nonredundant systems, it is easily

estimated by dividing the time a system is operational by the number of failures reported. Other

reliability indices used to compare two systems A and B, are the Reliability Improvement factor (RIF)

[Anderson 67]
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1 -R A(t)

RIF = t(2.2)1-Rsat

and the Mission Time Improvement Factor (MTIF) [Bouricious 69]

TA
MTIF = T when RA(TA) = RB(TB) = Rmn  (2.3)

which are useful only when the system under study must be available for a predetermined period of

time T called "mission time".

The concept of coverage [Bouricious 69] is defined as the conditional probability of successful

recovery, given that a fault has occurred. Although mathematically attractive, coverage has proven to

be very difficult to estimate for real systems. Finally, if the. Mean Time To Repair (MTTR) is also

known, an estimate of the system usefulness given by the Availability that for non redundant systems

is given by

MTTF (2.4)
MTTF + MTTR

2.2.1. Performance-Reliability evaluation

The above measures do not take into account the performance of the system whose reliability is

being measured. Consider Table 2-1 which lists the results obtained from seven different experiments

whose goal was explicitly to gain experience on systems reliability. Data for the first system (Yourdon

72], was obtained from a summary of failure statistics on a Borroughs 5500 over a 15 month period

starting in April of 1969. Limited information about the cause of each failure is available. For instance,

one of the categories includes system failures due to unexpected I/O intercepts. These failures are

recorded whenever the software responds to an interrupt signifying that some I/O action has taken

place, but discovers that it has no record of having initiated such action. It is thus an indication of

some form of hardware or software error but the particular cause for the failure (hardware or
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software) remains unknown. The data for the second system was reported in [Lynch 751 and comes

from the first thirteen months in the life of an operating system called Chi/OS for the Univac 1108

developed by the Chi Corporation between 1970 and 1973. No explanation is given about how such

an accurate decomposition of failures due to hardware and software could be obtained. [Reynolds

75] reports three years of data obtained from a dual IBM 370/165 at Hughes Aircraft Company

installed to handle a mixed batch and time sharing load. The fourth system is at the Stanford Linear

Accelerator Center (SLAC) where the main workload is processed as multi-stream background batch.

The system consists of a foreground host (IBM 370/168) and two background batch servers (IBM

370/168 and IBM 360/91). The architecture is designed to be highly available and reconfigurable.

The fifth system is the CMU-10A, an ECL POP-10 used in the Computer Science Department at

Carnegie-Mellon University. The data for the CRAY.1 was reported in [Keller 761, and the data for the

three generic UNIVAC systems was reported in [Siewiorek 80].

Table 2-1 gives, when available, a Mean Time to reStart (MTTS) value in hours (that is, the Mean

Time to System Failure), a Mean Number of Instructions to Restart (MNIR) which is an estimate of the

mean number of instructions executed from system start up until system failure, and the percentages

of system failures that were caused by hardware faults, software faults, and faults whose cause could

not be resolved. The information about execution rates needed to compute the MNIR value was

obtained from [Phister 79].

Obviously, the figures shown in Table 2-1 do not carry much information. A MTTS figure alone does

not tell the impact of unreliability on system use. Compare for example the CRAY-1, [Russell 78], with

the CMU.1OA, [Bell 78]. Although the CRAY-1 crashes twice as often as the CMU-1OA, it can operate

continuously at rates above 138 Million Instructions Per Second (MIPS), while the CMU-10A operates

at 1.2 MIPS. Hence the CMU-10A executes -1010 instructions between crashes while the CRAY-1

executes -10 12 instructions between crashes. Inconsistencies like this one suggest that reliability

modeling and measuring should be closely related with the characterization of the performance of the

system under study.

Integrated performance-reliability models have already started to appear in the literature. In [Meyer

79], a performance measure called "performability" gives the probability that a system performs at

different levels of "accomplishment". In (Gay 79], systems are modeled with Markov processes in

order to estimate the probability of being in one of several capacity states. This is a similar approach

to the one previously taken in [Beaudry 78], where the concept of "computation reliability" was

introduced as a measure which takes into account the computation capacity of a system in each
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System MTTS (hours) MNIR % HW % SW % Unknown

B 5500 14.7 2.61010 39.3 8.1 52.6

Chi/05 17 6.7 1010 45 55
Univac 1108

dual 8.86 2.81011 65 32 3

370/165

SLAC 20.2 2.3 1011 73.3 21.6 5.1

CMU-1OA 10 4.3 1010

CRAY-1 4 1.9 1012 -

UNIVAC 51 42 7
(Large)

UNIVAC 57 41 2
(Medium)

UNIVAC 88 9 3
(Small)

Table 2-1: Reliability experience of several commercial systems. MTTS is
the Mean Time to reStart. MNIR is the Mean Number of Instructions to
Restart.

possible operational state. A Performance/Availability model for gracefully degrading systems with

critically shared resources is given in [Chou 80]. Finally, in (Moreira 801 a model is described which

predicts the cost reduction associated with different values of coverage, repair rate, and diagnosis

time. An example shows how the advantage of using a N-redundant system can be quantified

assuming only permanent hardware faults.

' III I II I I I II I i ik
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2.2.2. Causes of unreliability

Most of the above models have been developed mainly for hard failures, that is, stable failures that

reflect an irreversible physical change in the hardware. Unfortunately, as it has been repeatedly

reported ( (Fuller 781, (McConnel 79b], [Morganti 78], [Siewiorek 78], [Ohm 79]), transient failures

occur at least an order of magnitude more often than hard failures. A cost effective analysis should

then consider transients as the main reason for system unreliability.

Simultaneously with the developments described above, qualitative relationships between

workload and unreliability have also been noted. The results published in (Beaudry 791 suggest a

strong dependency between workload and reliability of digital computing systems. And in the paper

by [Butner 80], this dependency is stated explicitly claiming that a periodic, workload-dependent

failure rate is more appropriate to characterize the reliability of time-sharing systems than the

classical constant failure rate model traditionally used. As reported in [Castillo 80a], it such a

dependency is taken into account it is possible to characterize the performance of digital computing

systems considering reliability as an inherent attribute.

Another factor affecting computing systems reliability is the reliability of the software managing the

use of system resources. Faults in the software which force a crash and restart operation are not

uncommon. They occur, in most commercial systems, much more often than permanent hardware

faults, and their effects are similar to the effects of hardware transient faults. The conditions under

which a software fault generate an error are usually impossible to determine (as soon as these

conditions are determined, the software can be corrected). Hence, the software faults remaining in an

operational system are obscure and manifest themselves only upon particular (but unknown)

conditions.

In summary, the problems currently relevant to computer reliability characterization are

1. Predominance of hardware transient faults over permanent hardware faults.

2. Software unreliability

3. Disconnection between reliability evaluation and performance evaluation.

The following sections elaborate upon these issues in more detail.
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2.3. Hardware transient faults

Hardware transient faults are induced by temporary environmental, electrical, or mechanical

conditions. Their effects include flipping a single bit in the main memory of a computer (due to the

emission of an alpha particle by radioactive elements present in IC packaging), reading erroneous

information from a magnetic disk (due to inaccurate positioning of the reading heads), resetting all

CPU registers (due to a power glitch), or receiving erroneous information from a bus (due to

electromagnetic radiation received by a bus acting like an antenna).

Although a given transient may occur more than once in the lifetime of a computer, its effects are

essentially unpredictable. Consider a single bit in memory that flips its value due to the emission of an,

alpha particle. If that bit is not storing information at the time that the transient occurs, and the value

of the bit is overwritten before being read, the transient passes unnoticed. However, if the same bit is

part of a pointer to one of the operating system critical data structures, the entire computer system

may crash.

The physical processes generating transient faults generation are presumably sparse since,

according toTable 2-1 many commercially available systems are able of continued correct operation

for several hours in spite of being built out of a large number of components. Nevertheless,

sparseness is not equivalent to total absence and as computing systems become more complex the

impact of transient faults may become harder to evaluate unless due attention is paid to this problem

during the design process.

2.3.1. Causes of hardware transient faults

Some causes of transients are:

9 Limitations in the accuracy of electromechanical devices (such as the positioning
servomechanism for the reading heads of a disk drive).

e Electromagnetic radiation received by interconnections (such as long buses acting like
receiving antennas).

o Power fluctuations or glitches not properly filtered by the power supply.

* Effects of ionizing radiation on semiconductor devices

This last cause is currently the most important challenge to device designers and requires some
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more explanation. It has been only recently that the effects of ionizing radiation have been recognized

as a source for "soft" faults in computer memories [May 79). "Soft" means that the information held

in a memory device has changed, but no irreversible change in the device has occurred. Information

in computer memories is stored as the presence or absence of charge in capacitors. When an

energetic particle creates electron-hole pairs in the vicinity of a capacitor, some of the added charge

carriers are collected by the capacitor. If the added charge is sufficiently large, the information stored

is changed. The amount of charge that represents a bit and the "critical" charge that is needed to

change it have decreased with miniaturization and the advent of. VLSI technology. Transient failures
in semiconductor memories due to ionizing radiation were not significant until the introduction of 16K

bit and 64K bit memory chips.

Two main causes have been detected so far as sources of ionizing radiation which affect the

operation of digital computers

" Trace amounts of natural radioactive elements in metallic and ceramic packaging

materials [Geilhufe 79]

" The effect of cosmic rays [Ziegler 791

Although the effect of radioactive materials in packaging materials can be reduced by further

purification and better system design, it is not clear how the effects of cosmic rays can be avoided

[Keyes 811.

Soft errors are sparse. The designer of a 16 bit 1M word system (built out of 16K dynamic RAM

chips) would observe a Mean Time To Soft Failure due to alpha particles of -40 days (Geilhufe 79].
For a system of the same size (built out of 64K dynamic RAM chips) the Mean Time To Soft Failure

due to cosmic rays would be of -16 days at sea level, -4 hours at 30,000 feet [Ziegler 79]. However,

a soft error is completely removed by the following write cycle. Thus, as pointed out in (Smith 811, the

observed soft failure rate depends on the frequency between writes or rewrites.

2.3.2. Hardware transient faults modeling

There are three basic approaches to hardware transient modeling. In each approach, the

Probability Distribution Function (PDF) of the time to Failure is assumed to be either an Exponential

distribution, a Weibull distribution, or an Exponential distribution with periodic failure rate.
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2.3.2.1. Exponential distribution

The most widely used model for failure process characterization assumes the failure process to be

a homogeneous Poisson process. The POF of the time to failure is then given by
- 1

"

Pe (tT) = 1-e e (2.5)

where X, is the (constant) failure rate. The maximum likelihood estimate of Xe is obtained simply by

dividing the time that the system has been operational by the number of failures reported. All

functions and parameters related to this model will be noted with subindex "e" and from now on this

model will be referred to as the exponential model.

2.3.2.2. Weibull distribution

Empirical studies [McConnel 79b] have shown that a Weibull distribution gives a better goodness of

fit to experimental data than a simple exponential. The Weibull PDF is given by

Pw(t<r) = 1 -ew (2.6)

The Weibull distribution is characterized by two parameters: XW the scale parameter, and aw , the

shape parameter. For aw = 1, the Weibull distribution degenerates to the exponential. For aw>l, the

Weibull distribution has an increasing failure rate. A decreasing failure rate corresponds to aw0t. All

reports published to date claim that a decreasing failure rate Weibull distribution fits experimental

data much better than a simple exponential model. Numerical procedures have been developed to

find the maximum likelihood estimates of Xw and aw. These procedures are based on the works of

[Thoman 69, Berger 74, Romano 77] and FORTRAN programs implementing them are given in

[McConnel 79a].

2.3.2.3. Exponential distribution with periodic failure rate

A workload dependent model has been presented in [Butner 80]. A linear or quadratic dependency

between failure rate and workload is also assumed. The workload is characterized by a periodic

function of time. The proposed PDF becomes an exponential "modulated" by a periodic function

-K lr .F U ('r)
P (t<,r) = 1 _ e P  e p p (2.7)

where F is defined as the load induced failure rate, U (r) denotes the instantaneous load value, and

K is a workload independent failure rate. This model will be referred to as the periodic model. all its

parameters having the subindex "p".
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Although it has not been used for reliability characterization, a periodic failure rate has been also

assumed in a model to determine the optimum checkpointing interval in a transaction processing

system by [Chandy 75a]. The assumptions in this model are that transaction processing systems often

operate under periodic demand, leading to a periodic failure rate. The optimum checkpointing

interval is determined such that the cost associated both with checkpointing and recovering from

failures is minimized.

For systems operating under periodic workload an alternative approach is to brake a period into M

discrete intervals. The system workload and failure rate are assumed to be constant in each interval.

This approach has been used by [Chandy 75b] to evaluate the optimum checkpointing interval in

transaction processing systems, and by [Beaudry 80] to characterize the reliability of a multiprocessor

for avionics applications and the reliability of the SLAC system described in Section 2.2.1.

2.3.2.4. Discussion

The popularity of the exponential model arises mainly from its simplicity. The exponential model

may be a useful abstraction to characterize how failures occur. However the validity of the

exponential model is not sustained by the data collected about how errors are detected. A Weibull

distribution with aw<l seems a much better choice. On the other hand, for systems in steady state

operation, the periodic model tries to incorporate the fact that the observed unreliability should

depend on patterns of usage, not on a constant set of parameters as the Weibull model implicitly

implies. This apparent conflict will be solved in the present thesis, where it is shown that eactf of the

above three models is a special case of a more general characterization.

2.4. Software Reliability

The problem of software reliability assessment is part of the more general area of software quality

assessment [Mohanly 73]. Effective mechanisms for measuring software quality are required due to

the high cost of software development and maintenance. By 1985 forecasts indicate that over 90% of

the total computing dollars spent annually will be for software [Horowitz 75]. The development of

techniques for measuring software reliability has been motivated mainly by project managers that

require models to estimate the man.power needed to develop a software system with a given level of

performance and measuring techniques to detect when this level of performance has been reached.

However, most software reliability models presented to date are far from satisfying these two needs in

a general context.

I IIII I II , -J
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There are basicly two approaches dealing with the design of reliable software. The first approach

consists in specifying the desired software behavior as accurately as possible and to develop error
free software according to the specifications. Thus, this approach deals with the development of fault-

intolerant software, and it implicitly assumes that it is possible to develop software packages of

arbitrary size and complexity which are completely error free. The second approach acknowledges

the fact that to write completely error free software is either impossible or excessively costly. Thus,

fault-tolerant software is written which takes into account the possibility of software faults and
provides mechanisms for recovering from their effects.

Unfortunately, the words "software reliability model" usually refer to mathematical models dealing
with software reliability assessment during the design of fault-intolerant software. This is a much more

restrictive concept than the general set of tools used to predict, calibrate, and characterize the
reliability of software in a variety of environments (which is what the words "'software reliability

model" would suggest to a novice).

2.4.1. Fault- intolerant software reliability assessment

Software reliability models (in the restricted sense described above) can be roughly grouped into

four categories. The first category would include models formulated in the time domain. These
models attempt to relate software reliability (characterized, for instance, by a MTTF figure under

typical workload conditions) to the number of bugs present in the software at a given time during its

development. Typical of this approach are the models presented in [Shooman 73], [Musa 751, and

[Jelinsky 731. Bug removal should increase MTTF and correlation of bug removal history with the time
evolution of the MTTF value may allow the prediction of when a given MTTF value will be reached. An

example of the application of time domain models to the development of a real-time system is given in
[Miyamoto 75]. The main disadvantages of time domain models are that they do not usually take into

account that bug correction can generate more bugs, and that software unreliability can be due not

only to implementation errors (bugs) but also to design (specification) errors.

Another approach to software reliability modeling is based on studying the data domain. The first

model of this kind was described by [Nelson 73]. In principle, if sets of all input data values upon

which a computer program can operate are identified, an estimate of the reliability of the program can

be obtained by running the program for a subset of input data values. A more detailed description of

data domain techniques is given in [Thayer 78]. In the paper by [Schick 78] the time domain and data

domain models are compared. However, different applications will tend to use different subsets of all
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possible input data values, "seeing" different reliability values for the same software system. This fact

is formally take into account in [Cheung 801, where software reliability is estimated from a Markov

model whose transition probabilities depend on a user profile. Techniques for evaluating the

transition probabilities for a given profile are given in (Cheung 75).

The third category includes models in which software reliability (and software quality in general) is

postulated to obey certain laws [Ferdinand 74], [Fitzsimmons 781. Although such models have

generated large amounts of interest, their general validity has never been proven and, at most, they

only give a figure for the number of bugs present in a program.

Finally, there have been some attempts to characterize total system reliability (hardware and

software) in [Costes 78], and warnings about how not to measure software reliability [Littlewood 79].

What all the above models have in common is that none of them characterizes system behavior

accurately enough so as to give the user a figure of guaranteed level of performance under general

workload conditions. They concentrate in estimating the number of bugs present in a program but do

not give any accurate method to characterize and measure operational system unreliability due to

software. There is a wide gap between the variables that can be easily measured in a running system

and the number of bugs in its operating system. However, a cost effective analysis should allow the

evaluation of software unreliability from variables easily accessible in an operational system, without

knowing the details of how the operating system has been written.

2.4.2. Fault-Tolerant Software

Fault-tolerant software assures the reliability of the system by use of protective redundancy at the

software level. There are two main strategies for obtaining fault-tolerant software:

" Recovery Blocks

" N-Version programming.

The Recovery Blocks (RV) strategy [Randell 75, Lee 79] consists of three entities: A primary

alternate (A,), an acceptance test (AT), and a list of supplementary alternates (A 2... A N-) Upon

normal execution, A, is executed first. If AT is passed, normal computations proceed. If AT is not

passed, a purging of data is performed and a new alternate is called. Some modeling efforts for the

Recovery Blocks strategy have been reported in [H-echt 76].
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The N-Version programming (NV) strategy [Avizienis 75, Avizienis 77) requires N)> 1 independently

designed programs (versions) for the same function. The results after each stage of computation are

compared and in the case of disagreement, a preferred result is identified. If redundant hardware is

available, the N versions can be executed concurrently. Otherwise, a performance penalty is paid

since the N versions have to be executed serially on the same hardware. In (Grnarov 801 the

processing times and reliability performance of the RV and NV strategies are compared.

Because of development costs, fault-tolerant software can be found in only a few systems with

exceptional reliability requirements, such as spacv or military systems. Thus fault-tolerant software

will not be modeled here since it is not available in the majority of commercial systems.

2.4.3. Discussion

In (Glass 811 a study about "persistent" software errors is summarized. A software error is defined

to be persistent if it eludes early detection efforts and does not surface until the software is

operational. One of the findings of this study is that a large percentage of persistent software errors

are instances of the software not being sufficiently complex to match the problem being salved. It

seems as if 'the programmers were straining to comprehend the complex interrelationships of a

problem solution and failed. The analysis section of a Software Problem Report presented by [Glass

811 as a typical example literally describes the cause of a bug as "insufficient brain power applied

during design". A large number of errors are the result of a predicate not having enough conditions,

or of a variable not being reset to some value after a major piece of code has finished dealing with it.

Unreliability due to software in operational systems is therefore mainly due to persistent errors.

That is, the complexity of the data to be processed has been oversimplified in some situations. When

one of these situations arise, a software error is generated. Since once it has been written the

software does not change, one would be tempted to view the software and all its attributes as static

entities. However, this is not what is observed in most operational systems. Although the software is

static, the complexity of the data to be processed changes dynamically according to workload and

use of the system. Therefore, the view of software reliability as a static property may be useful for

software designers, but it is certainly inadequate for users wishing to evaluate the impact of software

unreliability in a variety of working environments. The observed software unreliability in an

operational system is a dynamic attribute depending (at least) on the following two factors:

.How much the software is used (number of executions per unit time)
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*In what way is the software used (what is the complexity of the data to be processed)

These two points will be elaborated in Section 2.5.2.

2.5. Model verification requirements

The previous sections have summarized some current problems associated with reliability

characterization of digital computing systems. As stated in Chapter 1, the main goal of this thesis is to

provide a modeling methodology able of providing better reliability characterization, particularly

relating to the effects of hardware transients and software faults in operational systems. The following

constraints have also been imposed:

" The characterization should be user oriented. That is, it should provide users with a set of
tools to evaluate the impact of unreliability due to software and hardware transients. This
contrasts sharply with most software reliability models, which are oriented to help the
designer to meet a static requirement.

* No matter how complex the model may be, the results should be easy to understand and
apply.

" Model parametrization must be possible from easily measurable variables in operational
systems. Situations such as the ones created after the introduction of "coverage"
(conceptually attractive, but impractical to measure in real systems) should be avoided.

" The model must be validated by contrasting its predictions with the behavior of real
systems.

The last restriction is particularly important since validation will be possible only with systems which

have the necessary measuring tools already incorporated. Because of its availability at CMU,

validation will be made with the TOPS-10 Operating System, a MULTICS like Time Sharing system.

Since most commercially available Time-Sharing systems have protection mechanisms based on the

original MULTICS design, this is not a particularly restrictive constraint. However, MULTICS

protection mechanisms themselves may give some hints about how the analysis should be started.
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2.5.1. The MULTICS Time Sharing system

MULTICS (MULTiplexed Information and Computing Service) [Organick 721 was designed in the

mid 1960's as a prototype of a computer utility. Among other goals, it was to provide convenient

remote terminal access, continuous operation analogous to that of electric power or telephone

companies, and the ability to support different programming environments. Thus, one of the

requirements was to provide facilities for the protection of concurrently executing programs. The

protection mechanism proposed for MULTICS (and originally implemented in software) was named

rings ot protection. Conceptually, an executing program segment in MULTICS is executing in one of a

set of concentric rings. A program can access programs and data in the rings outer to its ring. But

data in inner rings is only accessed through predefined "gates". By subsetting the segments of a

process into rings and by effectively controlling interactions and communication between segments

in different rings, MULTICS provides the potential to isolate trouble and limit damage. Different rings

are equated to different levels of damage.

User

Figure 2-1: Rings of protection in a typical Time Sharing system

Later systems have typically four rings of protection (Figure 2-1) and have the necessary hardware

mechanisms to enforce protection across them. The innermost ring or kernel is the most privileged

and the closest to the hardware. I/0 interrupt routines, schedulers, pagers, and the most critical

operating system data structures reside in the kernel. The outer rings have different levels of privilege

and responsibility. In a typical partition, I/0 formatting and operating system services are executed in

the next ring or executive, command parsing and real-time jobs execute in the following ring or

supervisor and the last ring (the least privileged) is reserved for the execution of user processes and

run-time libraries.

AkI
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2.5.2. A starting point

One of the nice properties of having rings of protection is that software singularities are readily
identified. Assuming perfect recovery from faults in the outer rings, the entire system collapses only
when the kernel software cannot execute. But the kernel software will always execute properly unless

e Hardware transient errors corrupt the kernel code or data structures

* The kernel software itself contains faults that under certain conditions corrupt itself or its
data structures

* Some hardware does not exist because of a permanent hardware fault

The observed reliability due to hardware transients and software faults will therefore depend on

how much the kernel is used. Given that transients occur at random, the longer the systems executes

in kernel mode, the more likely is that a transient will affect the kernel software or its data structures.

Analogously, the probability that a software fault will manifest itself as an error will increase as the

kernel is exercised more and more. Thus, the observed unreliability due to hardware transient faults

and software faults should be a function of kernel usage.

The assumption of having perfect recovery from faults in the outer rings is too strong and can be

partially relaxed. In fact, the two main assumptions on which the thesis is based are:

* Software faults in the kernel are more likely to lead to a system failure than software faults
in any of the outer rings

* A transient affecting the operation of the kernel software is more likely to lead to a system
failure than a transients affecting other software.

These two assumptions are compatible with the presence of software faults in outer rings which may

abort single jobs, or even occasionally crash the system. The assumptions refer to the average

behavior of a system in steady state operation and do not negate the possibility of pathological

situations (such as the possibility of having a software fault that crashes the system in an almost zero

load situation). These two assumptions only suppose that such pathological cases are rare.

In Chapters 3 to 7, the consequences of the above two assumptions will be rigorously formulated,

validated, and an investigation of their main implications will be made. At the end of Chapter 7, the

modeling methods derived from these two assumptions will be combined with traditional modeling

tools and the possibility of permanent hardware failures will be also taken into account. Thus, a
combined model taking into account the effects of transient hardware failures, software failures, and

permanent hardware faults will be introduced.
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2.6. Summary

This chapter has summarized some of the problems associated with the characterization of

computing systems reliability. In particular, it has been shown how independent reliability evaluation

and performance evaluation is itself a problem. The main causes of system unreliability (hardware

transients and software faults) have also been described, along with current modeling efforts.

Modeling methodologies for hardware transient faults and software faults are completely

independent, probably because these modeling methodologies are a response to designer's needs,

and component designers rarely interact with software designers.

The approach adopted in this thesis to characterize reliability at the system level is to put more

emphasis on what will be observed while paying less attention to how and why a given error occurs.

The main implicit assumption throughout the thesis is that reliability of complex systems can be

characterized by examining the patterns of usage of system singularities. The more a singularity is

used, the more likely it is that a failure will be observed.

For (ideal) Time Sharing systems, the main singularity is the kernel of the operating system. The

kernel can be damaged either because of transients or because of kernel software errors. The more
the kernel is exercised, the more likely that a transient will affect its operation or that a software fault

will generate an error. The formal framework for this approach is presented in the following chapter.
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Chapter 3
Mathematical formulation

This chapter gives the mathematical basis of a model capable of predicting the unreliability of

digital computers due to hardware transients and software faults. The results are essentially

theoretical and will be validated by means of analyzing real systems behavior in subsequent chapters.
Although the main goal is to develop a mathematical framework suitable to the characterization of the

reliability of MULTICS like Time Sharing systems, the results obtained in this chapter are expected to

apply to a wider class of complex systems, namely, those systems with a failure rate that can be

approximated by either a stationary or cyclostationary Gaussian process. All the approximations and

specializations to computing systems analysis will be worked out in Chapter 4. The results presented

in this Chapter are closer to applied probability theory than to computing systems characterization.

For the reader not interested in strictly mathematical results the introduction to Section 3.2, Section

3.2.1, and the summary at the end of the chapter should be enough to give an idea of the main results.

In Section 3.1 the necessary definitions are given and the notation used through the thesis is

introduced. Section 3.2 is devoted to the description of the process underlying the unreliable

behavior of digital computer systems. The emphasis is not on why and how often faults are generated,
but on what the system is doing when an error is detected. The reliability of the system is shown to

depend on an integral converging to a Gaussian random variable and, more generally, to a Wiener

process. However, its evaluation requires some statistics which are impractical, if not impossible, to

evaluate from real systems. Thus, in Section 3.3 an approximation is given which depends only on
easily measurable variables. The Probability Distribution Function of the time to failure is shown to be

completely characterized by a single time function in Section 3.4, leading to a conceptually equivalent

but simpler description of the failure process than the description based on convergence concepts.

Finally, a summary of the results presented in this Chapter is given in Section 3.7.
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3.1. Definitions and notation

A Probability Space (9,'J is comprised of a sample space 9, a collection of subsets of 2 forming

a sigma field (written a-field) of events, A4, and a probability measure 9. An element wE2 is a possible

outcome of a random experiment. A subset of 2 (a collection of possible outcomes) is called an event.

In general, not all collections of outcomds are observable events. Probability theory d als only with

events in a a-field. A a-field of sets is a collection of sets closed under complementation, union, and

countable unions. The reason for associating observable events with a a-field is that whenever we

have a sequence of observable events (A.), the fact that their complements {A C) and countable
00

union Ui aAi are also observable events facilitates the proofs of many basic probability theory

results. Finally, the probability measure ? is a function that maps each set in Al into the unit interval

10,11.

Definition 1: A random variable x(w) is a function with domain Q and range the real line
R such that for every Borel set X in 2, the set {wjx(w)EX) is in the a-field of events ..

The definition ensures that the probability of any event of the form P({Ix(w)EX}) is well defined for

any subset X of S, where the Borel sets % are the subsets of 2 belonging to the smallest a-field

generated by the set of all closed intervals. Sometimes it will be necessary to refer to all possible

events associated with a random variable or with a collection of random variables xi ..xk. Such

collection of events will be a a-field and will be denoted by a(x1 .... Xk) meaning the smallest a-field

containing all the sets of the form

{Wjx 1 (J)EXI .... IXk( ) d X11,....,Xk s

Definition 2: The Probability Distribution Function (PDF) of a random variable x is
defined as the function

Px(x<_) = P({ Ix()<5})

The PDF of a random variable maps the real line R into the unit interval. It is a nondecreasing

function of j and Px(X<-OO) = 0, Px(x<OO) = 1. If there exists a nonnegative function px(u) such thata.
P(X a) = Px(u) du

the p is said to be the probability density function (pdf) of x.

Of particular importance is the Gaussian or Normal distribution. If a random variable x is Gaussian

(or normally) distributed, then
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(u.m)
2

P(x<a) = 1 ]o e 202 du (3.1)-- (2 r . J

where m and a 2 are respectively the expected value and variance of x. The normalized Gaussian

distribution (with zero mean and variance 1) will be noted 4b(a)

4)(a) = 1 e du (3.2)
(2w)1/2 eU d

Definition 3: A stochastic process {x (w); tET, we ) is a family of random variables all
defined in the same probability space 6 and indexed by a real parameter t that takes
values in a parameter set T called the index set of the process.

The indexing parameter t will represent time in all the processes presented in this thesis and T will

always be equal to the real line P, that is, only continuous time processes will be considered. For each

fixed tEIR, xt(w) as a function of w will be a real valued random variable. For each ijES2, xt (w) as a

function of t will be a real valued function of time called a realization or sample function of the

process. The set of all these time functions is called the ensemble of the process. A sequence (or a

countable stochastic process) of random variables x1(w), x2(j),... is a particular form of a stochastic

process in which the index set is the nonnegative integers N .

Stochastic processes will always be denoted such that time dependency will be expressed as a

subscript, while deterministic functions of time will have the argument in parenthesis. Thus, xI is a

stochastic process and h(t) is a deterministic function of .

The following convergence concepts will be needed later in the chapter.

Definition 4: Convergence in probability. The sequence (x1 (tj)} is said to converge
in probability to x(o) if for every e > 0

lim P( Xn-XJ>e) = 0

and will be noted as

plim xn = x

Definition 5: Convergence in distribution. The sequence x1 , x2.... is said to
converge in distribution to x if

lim Px (x_<j) P P(x<i)

n-.oO n

and will be noted as



28 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

n

Convergence in distribution is weaker as it is implied by convergence in probability.

Definition 6: A counting process {Nt(w); t>to) is a stochastic process having the set
IN + = {0,1.2,..,o0) of nonnegative integers as its state space.

For each wEQ, Nt(w) is a piecewise-constant function of t with jumps at t1(), t2(w) .... tn(w), the

values of t1 . t n depending on the realization of the process. Counting processes are always

associated with point processes, the value of Nt(w) for ti  t < t + , being the total number of "points"

generated up to t, + V All counting processes presented in this thesis will be associated with failure

processes of a given system, the value of Nt(w) for t1:t<ti , + 1 being the number of failures detected up

to t i + 1

Definition 7: A renewal process is a counting process where the time durations
between consecutive events are positive, independent, identically distributed random
variables.

Renewal processes are commonly used for reliability modeling. In the case of permanent hardware

faults, it is assumed that after repair has been done the system is as good as new. Thus, the times

between successive permanent hardware faults verify the conditions given in the above definition and

the failure process is usually assumed to be a renewal process.

Definition 8: A Poisson process is a counting process {Nt ; t<t0 with the following

three properties:

1. Pr[Nto=O = 1

2. For t0<s~t, the increment NsIt = N.N s is Poisson distributed with parameter At.A ,
where At is a nonnegative, nondecreasing function of t.

3. {Nt;t>_t O) has independent increments.

Property 3 is the distinguishing property. It means that for a Poisson counting process, the number

of points in nonoverlapping intervals are statistically independent random variables, no matter how

large or small the intervals are and no matter how distant or close they may be. The function At in

property 2 is termed the parameter function of the process. If At is an absolutely continuous function

of t, it can be expressed as

At =It A dr(3.3)
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where A, is a nonnegative function of t for t>t o. The function X is termed the intensity lunction of the
process Nt. At any time t>t o, the intensity function \(r) is the instantaneous average rate at which

points occur. If Nt is a failure process At is the failure rate of the process.

Definition 9: A Poisson process is said to be homogeneous when the intensity
function , is a constant X independent of time.

For an homogeneous Poisson process, the PDF of the time to the next failure tf given that the

system is observed since time t. is given by the Exponential distribution

P(tt<rIts) = 1 - e (3.4)

where A is the mean rate at which points (failures) are generated.

Definition 10: Whenever the intensity function At is not a constant but a deterministic
function of time A(t), the corresponding Poisson process is said to be nonhomogeneous.

For a nonhomogeneous Poisson process, the PDF of the time to the first failure is given by

P(tf:5rt 0 ) = 1 - e- h(t)dt (3.5)

where h(t) is termed the hazard function of the process. Note that by property 2 in the definition of a

Poisson process, h(t)At is the probability of observing a failure in the infinitesimal interval [t,t + At).

Thus, for a nonhomogeneous Poisson process, the probability of observing a failure in different

infinitesimal intervals evolves as a deterministic function of time.

Definition 11: Let xt be a stochastic process that is an "outside" process influencing
the evolution of a counting process {Nt;t>to}. Nt is a doubly stochastic Poisson process
with intensity process {Xt(xt);t>t 0 it for almost every realization of the process xt , Nt is a
Poisson process with intensity process function Xt(xt).

The process xt carries the information about how the intensity process varies, and for this reason is

sometimes called the information process.

Definition 12: A stationary proce ,s (in the strict sense) is a stochastic process {xt}
with the property that for any positive integer k and any points tI ...... tk and h in T, the joint
distribution of

{xt ....... x

is the same as the joint distribution of

IXt 1I h ...... Xtk +k)
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Intuitively, a process is stationary if it has the same joint statistics regardless of where the time

origin is set. Hence, if xt is a stationary Gaussian process, the joint distribution function of

{xt 1 h ...... xtk + h } is a multivariate Gaussian distribution whose covariance matrix is independent of h.

Definition 13: The Autocorrelation function RXX(t 1 ,t2) of a process xt is defined as

RXX(tl,t 2) = E[xtIxt2]

where E[..] stands for expected value.

It x t is stationary and real, RXX(t 1 ,t2) depends only on the time difference 'r = It1 -t2I and

Rxx(ir) = E{xt+Txtl

Definition 14: A stationary Gaussian process will be termed white noise if its
Autocorrelation function is given by

R 40 (3.6)
XX 2

where 8(x) is the Dirac delta function.

As will be discussed in the following sections, the main difference between white noise and any

other stationary Gaussian process is that of predictability. While a maximum likelihood estimate of

future values of a process exists for nonwhite noise processes, white noise is essentially

unpredictable.

Definition 15: A stochastic process x(t,w) is ergodic in the most general sense if all of
its statistics can be determined from a single realization x(t,wo) of the process.

Loosely speaking, a process is ergodic if time averages (the only ones that can be obtained from a

single realization of the process) equal ensemble averages (i.e. expected values). Obviously,

ergodicity can be defined with respect to certain parameters of the process. Only ergodicity with

respect to the autocorrelation function will be needed in this thesis, which is defined as follows:

Definition 16: A stochastic function is ergodic with respect to the autocorrelation
function if

T
Rx(T) = d x t (3.7)

XX IT-00 2TJT t+

with probability one.

If ergodicity of the autocorrelation function is satisfied, the autocorrelation function can be

estimated by computing the above integral for a finite record of a single realization of the process xt.
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Definition 1 7: A real valued, continuous time stochastic process is defined to be a
cyciostationary process with period T if and only if [Gardner 75]

1. E{xt) = E{xt+T)

2. Efxtxs) = E{xt+TXs+T V8's,t

that is, it is a stochastic process with periodic mean and autocorrelation functions.

Definition 18: A doubly stochastic Poisson process will be said to be a cyclostationary
Poisson process if its information process is cyclostationary.

Definition 19: A Wiener process is a stochastic process {Wtt>to} such that =0
and the joint distribution of 0

(W n ....... Wto) tn>tn1>.... t0 > 0

is specified by the requirement that the random variables xk =W *Wt , k n, be
independent, normally distributed random variables with k k-i

E[Wtk" Wt-1 = (tk' tk1)

Var(W Wtk. 1 = O'2 (tktk1)

In particular, note that for fixed t, Wt is a normally distributed random variable with E[Wt] = pt and

Var[Wt] = a2t. The Wiener process is an interesting abstraction useful in describing certain physical

phenomenon such as the Brownian motion of a particle in a fluid. It has curious mathematical

properties such as the fact that although almost all sample functions are continuous, they are

nowhere differentiable. However, although being nowhere differentiable, if w, is white noise,
t

Wt w=  wr d "  (3.8)

in the sense that the integral on the right side of the above equation has all the formal attributes of a

Wiener process.

Let C denote the space of all real valued, continuous functions on [0,00) and let C denote the

smallest a-field of C where Wt is measurable. It can be shown that there exists a unique probability

measure lVsuch that {Wt, t~t<oo} is a Wiener process. By definition, WVis such that Wt is a Gaussian

distributed random variable and W(t,a) will be used to note

V(t,a) = P(Wt__)

= 2- "x2/2t= 1e dx (3.9)
(2,ft) 1/ 2 o
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3.2. The underlying failure process

The mathematical problem to be solved is summarized in Figure 3-1. As it has been explained in

Chapter 2, the problem is to characterize the unreliability of a MULTICS like Time Sharing System due

to hardware transient faults and software faults.

Figure 3-1 shows a situation in which hardware transient faults occur in different components of

different subsystems (memory, CPU, bus) at times t1, t2 ..... The sensitivity of the system to the

presence of a hardware transient fault depends on what the system is doing at the moment that the

transient occurs. If a transient occurs while the system operates in kernel mode the system will crash

with probability Pk" If the system operates in user mode at the moment that the transient occurs, the

probability of a crash is pu. It is assumed that Pk>Pu . The system may also crash while in kernel mode

due to the manifestation of a kernel software fault. The probability of such an event during time

interval at is assumed to be p at (the assumption that p is constant will be relaxed in the following

Chapter).

The probability of observing an error in a single component is extremely small, and the number of

components, very large. The average Mean Time To Failure (MTTF) of a single component is on the

order of 10r hours (-103 years) for hard failures [Hodges 77]. The number of components varies from

103 for a small minicomputer like the PDP-1 1/40 [Bell 78] to 105 IC packages for a supercomputer like

the CRAY- I (Russell 78]. Hence the failure process due to transients is equal to the superposition of a

large number of very sparse failure processes. It is proved in [Cinlar 72] that this type of superposition

converges to a Poisson process. Thus, the system failure process can be viewed as a Poisson

process with intensity

= Pk + 
'ps if the system operates in kernel mode at time t

= 1 Pu otherwise

Ix will be termed failure rate because it is the rate at which errors leading to a system failure are

generated.

3.2.1. The underlying intensity process

Let N be the counting process which counts the number of system failures in the interval

[tl,t2]. Whether the system operates in kernel or user mode depends on user requests for program

execution and on program behavior. But it is certain that requests to the kernel will arrive at random

and that the duration needed by the kernel to satisfy each request will be also random. At is therefore

a stochastic process and N t 1,tY becomes a doubly stochastic Poisson process.

I IItl I IIt i• 2 1
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Instantaneous average number of requests to the
Kernel software per unit time

Time
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Figure 3-1: Typical sequence of events relevant to the characterization of
the reliability of a Time Sharing computer system. System failures due to
hardware transients have different probability of leading to a system failure if
the system operates in kernel mode than if the system operates in user mode.
Kernel software faults can only lead to system failures while parts of the
kernel are executed.
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Let RT be the number of requests received by the kernel in a time interval T. A common assumption

made in queuing theory is that RT is a Poisson distributed random variable,

P(R T = n) (," e -PT (3.11)
T(RTn e

where PT(R = n) is the probability of receiving n requests in an interval T and V is the average number

of requests received per unit time.

Operational policies and human behavior guarantee that in most Time Sharing systems p is not

going to be a constant but a time varying function reflecting the workload of the system at each time.

Thus, more generally, the probability of observing n requests to the kernel in the interval [t1 ,t2 ]

becomes [n
[ ( Pr))dd,,r

P(R[,2 =n)= ne (3.12)

where P(t) is the instantaneous average number of requests to the kernel per unit time and

E[R[tt 2jJ = / T dr (3.13)

is the expected number of requests in the interval [t1,t2].

For a doubly stochastic Poisson process, the probability density function (pdf) of the time to the

first failure given that the system is started at time t = t8 is given by [Snyder 75]

pf(Irlt,) = E[ x el u] (3.14)

where the expectation is taken over the ensemble realizations of AT on fts, r. As shown in [Saleh 741

the above expectation is equal to

p (It - " a E (3.15)

where

AIt. - fr] Xtdt (3.16)
S

The statistics of A ,ts'f] are therefore required. Note that the problem of determining the statistics of

A t J is equivalent to that of finding the distribution of the time that the server of an M/G/1 queue is

busy [Kleinrock 751. The value of A can be expressed as

A[I't . Pu(t2-t, + (PkPu+ ," -1 ' s (3.17)

where s. is the duration needed to serve the i.th request to the kernel. At~lt is equal to a term that
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grows linearly with time plus a random sum of the random variables s.. Intuitively, for large integration

intervals, the expected number terms in the interval will increase such that the distribution of At,2
should approach a Gaussian distribution. This sum reminds one of the central limit theorem, which

roughly states that as the number of terms in a sum of independent and identically distributed random

variables approaches infinity, the distribution on the sum approaches the Gaussian distribution. Here

though, the number of terms in a time interval is not fixed, but a random variable, and the successive

summands may not be independent. However, as will be proved in the following Section, the central

limit theorem also holds for A (under some mild assumptions made precise below). This fact will

permit us to use the Gaussian distribution to compute expectations of the type shown in (3.15).

A stronger limit theorem can also be proved for the distribution of A lt'~.The integral of the failure

rate process converges, in fact, to a Wiener process. This result, proved in the Section 3.2.3, will allow

us to explain why the apparent hazard function of the failure process is a decreasing function of time

and will permit us to compute its limiting value. Curiously, the rate at which A [lt converges to a

Wiener process will be shown to be one of the parameters characterizing the reliability of such

complex systems asTime Sharing computers.

REMARK: If P~ is a constant independent of time, all the parameters characterizing the underlying

intensity process are constant an~d Xwill be stationary. Under this assumption, the failure process

becomes a renewal process. Indeed, no repair takes place after either transients or software faults.

Therefore, after each failure the system is restarted and starts operating as new.

3.2.2. The central limit theorem for a random sum of dependent variables

A ti Y can be rew ritten as R[ it2

A =jt , a(t2.t1 + PT1'2I $1 (3.18)

where a = PUand P = (kP + ps). Pit is the number of requests to the kernel in the interval ft Vt2

and it is assumed to be a Poisson distributed random variable with pdf given in (3.12). s. is the tim§

required to satisfy the i-th request. The s. will be assumed to be identically distributed. It cannot be

assumed, though, that they are mutually independent since requests to the kernel close in time are

likely to be related one way or another (e.g., only a process that has been recently activated can be

deactivated). However, it is reasonable to assume that requests to the kernel separated by a long time

are independent. Thus, the sequence {s,) will be assumed to be stationary and a-mixing, two

concepts that are defined as follows:
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Definition 20: Given a sequence {s,) of random variables, the sequence is said to be
a-mixing if there exists a sequence {an) such that for each k,

IP(AnB) -P(A)P(B)I a n and an-0 as n--s oo (3.19)

AE~r(s ..... sk)

BEv(sk+ n' Sk.+n+ V-..)

Definition 21: A sequence {s,) is said to be stationary if the distribution of the random
vector (s, si + I ....... s + k) does not depend on I.

It is therefore assumed that s, and s, + k are approximately independent for large k and the statistics

of {s} are independent of the time origin. Define now

x, = s,- E[s] (3.20)

and let

S= 1x (3.21)

such that E(Sk] = E[xi] = 0. Without loss of generality assume t1 = 0, t2 =t, a ==1. The integral of the

failure rate process can now be expressed as

At= t + RtEsj + SRt (3.22)

Let the following conditions be defined:

Condition 1: Convergence of (Ski. If

pt-- < =*.V(a) (3.23)
n 11

The sequence {Sk1 is then said to satisfy the central limit theorem with norming factors
nl/

2 .

Condition 2: Uniform continuity of {s d.Given any small positive z and -9, there is a
large n and a small positive 8 such that if n> n then

P fmax ISn.S kl< enl/2 a) > 1. (3.24)
Ik-nl<8

Condition 3: Convergence of Rt.Let R be a sequence of integer valued random
variables such that
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R
t

plim R= v (3.25)
n-*co t

Anscombe has proved the following result [Anscombe 52]

Theorem 22: Suppose that {Sk} satisfies the central limit theorem with norming
factors n1/2a (Condition 1), that the convergence is uniform in probability (Condition 2)
and that Rt is an integer valued random variable satisfying Condition 3. Then

SR
p t <all = e(a) (3.26)(tp)/2

That is, the central limit theorem also holds for a sequence in which the number of summands is a

random variable provided that Conditions 1 through 3 are satisfied.

A proof that the {Skd satisfies the central limit theorem when the xi form a stationary, a-mixing

sequence can be found in (Billingsley 791, a fact that is stated precisely in the following theorem.

Theorem 23: Suppose that {x.} is a stationary, a-mixing sequence with an=-0(n5)'
and that E[x] = 0 and E[x12]co. If

s= k x(3.27)

then {Sk} satisfies the central limit theorem with norming factors n'/2a where

Var[S'1 -a
2 

= 0 3.8va[s.-* oF = E[x2] + 2 Ek-1E[xix, + 0 (3.28)
n

and the series converges absolutely. If a>O, then
Sn

P n/2 a ) } 4 (a) (3.29)

Thus, a stationary, a-mixing sequence satisfies Condition 1. A Poisson distributed random variable

obviously satisfies Condition 3 (provided that (t) is bounded). To use Anscombe's theorem it is
necessary to verify that a stationary, a-mixing sequence is uniformly continuous in probability

(Condition 2).

Lemma 24: Suppose {x11 to be a stationary, a-mixing sequence with an = O(n "5 ) and
let {Sk be the sequence defined in (3.27). Then, given any small e and 71 there exits a
small positive 6 and a large n. such that if n>n.

Pf max ISn.Ski < en1/2a ) > 1.t (3.30)
Ik-nl<Sn

PROOF: It must be shown that given e,11>0 there is a 8>0 such that for n>n

6-,
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Pt IS n-Skl l1/2 a < q for any k such that jk-njI6n (3.31)

In particular, it will be shown that

P( ISn-SkI en 1/2 for any k such that n<k<(1 + 8)n (3.32)

can be made arbitrarily small. A similar argument would apply to values of k where (1-6)n<k<n. By

Tchebyschev's inequality,

P ( j~k n 1/2 VrE lvarXi(3.33)-n+1 xil e al/2 <  - ()no

r %"(1 + 8)n

P f '' i=n+ xj > en'/2( < a inIXij (3.34)
eIi~ 2 nif2a no2

where, by stationarity
k [X2-It-n-1

varE".i=n+1 X] = (k-n)Ex11 + 2 E.i= 1 (k-n-i) E[x1X1 +1] (3.35)

r -(I + 8)n [2 a' S-1

VarL2-,i=..n xJ = SnE[x] + 2 2--,= 1 (5n-i) Exlx1 +] (3.36)

Thus,

u" "(1 + 8)n kn
VarL...,i=n+1 xJ -VarLei.n+iX

Ek-n-I '"'5n-1
(n + n-k)E[x ] + 2(8n + n-k)i= 1E[XlXl+iJ +2.,kfn(6 n-i)Exlx1 +ij  (3.37)

Since n<k_(1 + 8n), let k'n = k, 1 <k'<l + S. From the properties of an a-mixing sequence,

lim .(k,.1)n (8-i/n)E[Xl 1x + i = 0 (3.38)
n--0O

and -"(1 + 8)n "1

lim VarL )i=n+lx] -VarE i=n+l

,+ 1(-k')E[xI] + 2 (8 + 1-k') E[x 1 x1 +i] (3.39)

The series converges absolutely for the same reason that a 2 converges absolutely in (3.28) (see

[Billingsley 79] for details). Thus, if v>0, the above limit is also positive. Therefore, there exists an no

such that
(I + 8)n K

)-rI=n+lXiJ > 0 n>n0  (3.40)
n

Hence, for n>n ,

" .. ......... I I --11



MATHEMATICAL FORMULATION 39

P( j k .+ X V r -- (1 + S)n x

i[ > en 1 / 2 a ]< e~na2  (3.41)

But Vr"E -(1 + S)n a-
Vr/i=n+lx i X2SE[x ] + 2 ,-..(S -- ) Exx 1 ] (3.42)

nn

which, given n>n 0, can be made arbitrarily small by a proper choice of S. In particular, chose 5 such

that r -(I + S)n

Var i=n I ] <.e2o2 (3.43)

n

and (3.30) follows.

It is now possible to prove the following theorem:

Theorem 25: Let (x.) be a stationary and a-mixing sequence of random variables with

an = Orn5), and let Nt be a sequence of Poisson distributed random variables satisfying

Cond.t!%on 3. Then,

Pt t < ) = ¢,(a) (3.44)
(t2) a

where a has been given in (3.28).

PROOF: Condition 1 holds by Theorem 23. Condition 2 holds by Lemma 24. Condition 3 holds for a

Poisson distributed random variable if v(t) is bounded. Therefore, by Theorem 22 the limit of the

random sum converges to the Gaussian distribution. I

Corollary 26: Let N be a doubly stochastic Poisson process with intensity process
X, as defined in (3.10). II1'y

pt

PlimT .1 f v(-)dT = P (3.45)t--*oo t ,0

then, the Probability Distribution Function (PDF) of the time to the first failure given that the
system is under observation since timle ts is given by

E[ I Var [Ajt,,|]

p(tfIt8) = e E' ts.T+" 2 (3.46)

where

E[Aat,.] = a(r-ts) + P E[Ri ,11 E[si (3.47)

Var[At,,]] = 2 ( E[R[,S..]2 + Etsil 2 \,arR ) (3.48)

rs rR(4
,L II Il -I I g
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PROOF: Remembar that

A =a(t "t1) + P / 1 ls3+S (3.49)

where xi =s*E~s and Sk 2 x, For large [ti ,t21, by Theorem 25 SR converges in distribution
to a Gaussian random variable with zero mean and variance ~ 2

Var[SR j = E[P ~jur2  (3.50)

where a is given in (3.28). Rft2 is a Poisson distributed random variable. Hence, for large [ttiti
also asymptotically normal with mean and variance

E[R tt2 ]-Y Var[R[1l,, = itJ v('r) dir (3.51)

Furthermore,

S00

ELR tl.Y SR 1 1Y .'r rP(Rt1 t 2 = r) E[SrI = 0 (3.52)

Therefore,

E teA 1"i ,1Y) =e'at 21) E {je'Ei'R [ti t2] ] E (e~ iR ty (3.53)

Note that if z is a Gaussian distributed random variable with mean m~ and variancea2

E{e 1= e* e' 2a 2 dz (3.54)

af2
*m +-Z

-e Z 2 (3.55)

Hence,

E '~~ 1-)= exp(fER ]s] + #E%]2rRt. (3.56)

and

E e#SR B,21 = exp pERtj 2 (3.57)

and (3.48) follows.

The distribution of (S)not only converges to the Gaussian distribution for a large (expected)

number of summands, but {Skl also satisfies the so called invariance principle, a concept for which

some more elaborate mathematical tools are required and which is described in the following Section.
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3.2.3. Convergence to Wiener measure

Let C be the space of continuous functions on [0,1] and let C be its (1-field of Borel sets. For each

wEQ let p(u) = p(u,w) be the function defined on [0,o) defined by

p(u) = SLJJ + (u.[uJ)xLuj+ 1  (3.58)

For n = 1,2.... define pn(u) = Pn (u,i) for O<t<l by

p(tn) (3.59)
Pnt 1 n/2 a

Thus, pn(') is that element of C which is linear on each interval [(k.1)/n, k/n] and satisfies

Pn(k/n) = k<n (3.60)

Definition 27: If Pn(A) = P{p EAI for AEC then we say that {xil-satisfies the invariance
principle with norming factors n a if Pn(A)=*9(A), where W() denotes Wiener measure.

Now, for integers c,p,n define n. = jn/c j = 0,1,...,c and niu = n(j-1) + u)/c,j= 1 ,...,c n = 0,1 ..... .

Definition 28: For any real numbers a, , i let En,r be the set in Q where the relations
i-i-

aj tisie n -< i if n i-1< .n i  (3.61)

are satisfied for Kr but not for i = r.

Define the following two conditions:

Condition 4: For any integer c

lim P{ Sin/c-S(i.1)n/c 5 ai(nc)/ 2 o I = 0(a,) i=1 ... 'c (3.62)

Condition 5: For any integer c, any set (a.a ..... c) and each 0)O

lim lim sup P(E tISr'SrI en = 0 (3.63)
P n- -fl

0 0 
r r

where r' = niu + 1 is that integer such that niJu<r<n U

The conditions under which the invariance principle holds for sequences of dependent random

variables are stated now. A proof of the following theorem can be found in [Billingsley 561

Theorem 29: The invariance principle holds for the sequence {S} if Conditions 4 and
5 are satisfied.

It will now be proved that the invariance principle holds for a stationary, a-mixing sequence of

random variables.
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Theorem 30: Let {x.) be a sequence of stationary, a-mixing random variables with
a = 0(n.5 ) and EIIxj1

4jO<O. The invariance principle holds for {Sk} with norming factors

(nc) 1 '2 o, where a has been defined in (3.28)

PROOF : It must be proved that a stationary and a-mixing sequence satisfies Conditions 4 and 5.

Condition 4 will be proved first. By stationarity,

Pt Sin/c- S(i1)n/c _ ain l / 2 } X Pl_ 1  a an 1/ 2 ca 1 (3.64)

Pf 1=x, < (c)" 2 1 (3.65)

Therefore, by Theorem 23

lir Pt Sin/c ".51)n/c (inc)l/2(r =*(i) (3.66)
n(-*iO

Define now

Ci = El (si/c .S(,o 1)l(/S c'S.I,/nCS ) (3.67)

Also by stationarity, assuming j > i,

. i= E X[) i '( -i)n/c) + Xi)] (3.68)

By the definition of an a-mixing sequence,
r 'nlc GF'-(- + 1)n/c

V < E[ .i= 1 xiJ E2..(-UIl)+I xi ] + aUi)n/c (3.69)

and
F n / c "1r j I~l n /~c

C > EE E x] ELZ(- I xi] a I)c (3.70)

Since E[x] = 0 and

lir a = 0 (3.71)
n -- n0 /c

it follows that

nci j = 0 i*J (3.72)

and

C1'n . "n/c,im C E [( (3, ,']<.73)
11-,.0 n

= Co 2  (3.74)

Thus, as n-+ 00 the distribution of the random vector
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12 (Sn,'Sn2"Sn, ....... Sn)'Sn (3.75)

(nc) "a 12 C C1I

approaches a multidimensional Gaussian distribution having as covariance matrix the identity matrix

and Condition 4 is satisfied. As for Condition 5, note that

P( E . .-sI > &n ) <P(Enn { s,.s, _lh/2> n"/2))

+ P( E,,n { Ism"r 2: en"/ 2 /2 3) (3.76)

As for the second term in the right hand of (3.76),

P{ E .lns,+m-Sj > en112o2 I = P1 IS,.m-SI > -n"l/ 2 /2 3 (3.77)

= p{ t.r m - , > en/2)/2) (3.78)
</ P IxI > en1/2 m 3 (3.79)

Hence,

P1  'Srn /2) : mEn=1 P ( Ix,i 1 En }/2m (3.80)

< 2m 2m--) 7, EtIxI2+8) (3.81)

for any 8 > 0 by Tchebyshev's inequality. Chose now 8 = 2 and m = O(n"/ S) and

lim r= P= I Sr+m-Sr > en /2/} = 0 (3.82)
n-,o

And now for the first term in (3.76). By the properties of an a.mixing sequence and since Enr is

defined in

"r=, P(Er t IS,.'r.ml >+nm2'0 })

'r= 1P(En) P ISSr l _ en'/ 2a/2 ) + am  (3.83)

< ( 'J~ *r~ m1 , - ,el Ino/2 ) + am (3.84)
r

max 4Var[ISr"~Sr ml]) + am (3.85)
r e2na2

2 _ + 2 (3.86)

a 2cP e2nc(
where J, and 12 are bounded. The last inequality has been obtained taking into account that r'.r will

be at most n/c, and rewriting the variance of ISr, -Sr + ml as a function of a2. Therefore

II , . • . , -- , _t
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lim sup P"2.. P( Enrn { ISr.-Sr ml ent/2a/2 3) < 4 1  (3.87)
n 00 e 2Ci

As n--* 00, the second term in the right hand side of (3.76) goes to 0 by (3.82) As V-- 00 the first

term also goes to 0 by (3.87), and (3.63) follows. I

Since the sequence (xi) satisfies the invariarice principle it is now possible to use the following

theorem also due to [Billingsley 631. Let Rt be a sequence of integer valued random variables. For a

realization of the sequence, Rt(w) let Ww), Q() ..... be the successive discontinuities of Rt(w) as a

function of t, so thatR = i if J :t<i+ -" Define now

R t =- i + ti1. i  itfji<Kt% +!1 (3.88)

Thus, R't is that function of t which is linear on each interval [Ji, , + and agrees with R, at its jumps.

Define now q(t)= p(R't), where p() has been defined in (3.58), and qu(t) =q(ut)/(Vu) 1 /2a. Define a

measure on C by Qu(A) - P(qUEA}.

Theorem 31: If {Si} satisfies the invariance principle with norming factors n112a and

R -r 0p ,im I supr< t I- - I ) = o (3-89)
t-.

Then (SR I satisfies the invariance principle, that is, Ou(A)=*W'(A).

It is now possible to prove the convergence of A to a Wiener process.

Corollary 32: Let Xt be the failure rate process defined in (3.10). As the integration
interval approaches infinity, the integrated rate At converges in distribution to a Wiener
process Wt with

E[Wt] = (a + #E(silr)t (3.90)

Var(Wt] = p2,(02 + E(s1]2)t (3.91)

PROOF : The proof is identical to that of Corollary 26. Just note that Rt converges also to a Wiener

process independent of SRt. Further, note that (3.89) is satisfied since

P Isupr<t i Rl - r> < V[Rl (3.92)

t"Pt <(3.93)
e2t2Pt

which goes to zero as t--+ 00.

I1=1 I II1| I I I I i , I , ... . .. J
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By the definition of Wiener measure,

P <. = I fa ex dx
(U) 1/2o•  (2wt)'1 2  . e d

Hence, the invariance principle implies the central limit theorem. However, the invariance principle is

a much stronger limit as it also implies that AI has independent increments. That is, as u approaches

infinity the random variables

S nut.~k and SR
IRUN-' IV and RU[tk'tk. 1]

are independent, normally distributed random variables. This result could never be obtained from the

central limit theorem.

3.3. The observable process

In the previous section the PDF of the time to failure of a computing system has been characterized

by some convergence limits. The expressions obtained depend on some statistical properties of the

time that the kernel operates in kernel mode. In particular, they depend on the variance

02 = E[x12] + 2 Exlx , +kI (3.94)

where the xi are the service times of successive requests to the kernel. Unfortunately, the

measurement of E[x xI 1+] is not likely to be possible on real systems. The kernel is executed at least

once per line clock tick, 60 clock ticks per second. To estimate the above statistic, either a complex

hardware monitor is required or the entire kernel software has to be modified such that at the start

and end of each service a time stamp is recorded somewhere. Both approaches are cumbersome and

impractical for operational, commercially available computing systems. Since one of the premises of

the present work is that any mathematical characterization must be verifiable from easily measurable

variables in operating computers, an alternate way is required.

3.3.1. The observable intensity process

Let the process Xt be defined as follows:

t.W/2

X=( d (3.95)

that is, It is the result of averaging Xt over an interval of duration W. The question now is

ft2  f2tXT dr tj 'Xf dr"
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If the integral of Xt can be approximated by the integral of Xt the s ituation is much better. Most

operating systems automatically measure the cumulative time in kernel mode, such that the values of

Xt can be easily sampled. Fortunately, the answer is affirmative. The exact value of the integral of XI is
ft2 f.rt2 t + W/2

d,= w . Xddt (3.96)
i t2 + t-W/2

= 7t) A dr (3.97)
J lW / 2 It

where W is the window function shown in Figure 3-2.

Ww )

[ 1 ,t121

1 -

0 it1  2

Figure 3-2: Window function used to obtain the integral of At

That is,
2  h'f22 d=" + ew (3.98)

The absolute value of the error term depends only on w. As the integration interval [t1 ,t2] increases,

the error term remains constant.

Given a realization of At, Xt is defined such that
1:2

A t 2 = Xr dt  (3.99)

can be used as an approximation of A Thus, the pdf of the time to failure can be approximated

by
p(.rfto)- - E [e"ht'2 (3.100)
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Now let the value of the averaging window, w, be sufficiently large that the central limit theorem

holds for X. For fixed t, Xt can be approximated by a Gaussian random variable. This assumption is

consistent. Let w = 10 sec. Xt is then equal to the sum of -10 3 random variables. But typical MTTF

values are on the order of, at least, hours. Hence, the evaluation of t will be based on an integral

over, say, 10 hours. The error term is equal to an integral over a period of 10 sec., and therefore can

be neglected.

7't then becomes a Gaussian stochastic process, and At ,t, being the integral of a Gaussian

process over a finite interval, will obviously be a Gaussian random variable. If X, is a Gaussian

stochastic process with mean E[X] and autocorrelation function RXX(s,t) ,A is a Gaussian

random variable with mean

E[.("t1 2 1 = E[Xt] dt (3.101)

and variance
Vat[A , t 2  = 2 [ RX(s,t) - E[Xs]E[ IX]] ds dt (3.102)

(see [Papoulis 651, pp. 323:325). Hence,

Var[its]]

P(tf<rr 3 =e[1 Cf;l,]] 2 (3.103)

The difference between (3.103) and (3.46) is that the values of (3.101) and (3.102) are much easier to

estimate from an operational system than the values of (3.47) and (3.48). To estimate (3.101) and

(3.102) all it is needed is a sequence of sample values of the fraction of time in kernel mode. And this

is an easily observable sequence.

3.4. The equivalent failure process

Expression (3.103) gives the PDF of the time to the first failure given that the system is observed

starting at time to. Given E[X] and RXX(s,t) all the functions on which P(tf<rIt s) depends are known

and deterministic. Expression (3.103) can therefore be viewed as the PDF of a nonhomogeneous

Poisson process.

REMARK :The fact the the PDF of the failure process introduced in Sections 3.2 and 3.3 is

equivalent to the PDF of a nonhomogeneous Poisson process with PDF given in (3.103) does not

L . .II IIII i
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mean that the two processes are indistinguishable. It only means that the statistics of the time to the

first failure are indistinguishable. However, if 't is stationary such that the failure process is a renewal

process, then the process with stochastic intensity and the nonhomogeneous Poisson process are

truly equivalent.

A nonhomogeneous Poisson process is a much simpler conceptual framework to work with than

the situation described in the previous sections of this chapter. A nonhomogeneous Poisson process

is completely characterized by its hazard function, a deterministic, time varying function. Thus, if
reliability characterization can be made based only on the distribution of the time to failure, the

hazard function of the equivalent failure process is all that is needed.

3.4.1. The hazard furction

A nonhomogeneous Poisson process is completely specified from its hazard function. From (3.5)

note that

h(t) p(t) (3.104)
1 -P(tI<t)

Thus, from (3.103),

aE[At] 1 aVar[Xt]

h(t) = (3.105)at 2 at

From (3.90), (3.91), and (3.105) it can beseen that for large integration intervals the hazard function

becomes a constant independent of time. If the system has been started at t = 0, the quantity h(t)Qt is

the probability that a failure will occur in the interval [t,t + At). Therefore, as the integrated failure rate

converges to a Wiener process, the hazard function of the equivalent process converges to a

constant independent of time. In that case, the equivalent failure process degenerates to a

homogeneous Poisson process. For a homogeneous Poisson process, the number of points in

disjoint time intervals are statistically independent. This in turn implies that the random variables

A1 = dr and A2  X 1

are statistically independent. Therefore, the convergence to a coistant hazard function could not

have been guessed from the central limit theorem alone since in general, A, and A2 will not be

independent being the sum of an a-mixing sequence.
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3.5. Summary

This chapter started with the assumption that the failure rate of a Time Sharing computer is

continuously switching between two states. While in each state, the system has a given sensitivity to

the presence of hardware transient faults and software faults. The PDF of the time to failure depends4

on the integral of the failure rate. As the integration interval becomes much larger than the rate at

which transitions between states occur, the integrated failure rate converges first to a Gaussian

distributed random variable, and for longer integration intervals, to a Wiener process.

This description has been completed by an approximation where the failure rate is not a two state

process, but a Gaussian process resulting from averaging the real failure rate over a short period of

time. In the case of digital computers this is just an approximation, but in other systems, a Gaussian

process may be the actual failure rate.

It has been then shown how the statistics of the time to failure are completely determined by the

expected value and variance of the process At 1 ,the integrated failure rate. Once these two moments

are known, the failure process can be viewed as a nonhomogeneous Poisson process since all the

functions on which the POF depends are deterministic. The PDF and hazard function of the

equivalent failure process are given in (3.103) and (3.105). Both depend only on the expected value

and variance of the integrated failure rate since the system start time. These two moments depend in

turn on the frequency with which requests arrive to the kernel, and on some statistics about how the

requests are served. The following chapter specializes these results to two special cases of wide

applicability.
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.Chapter 4
Specialization to systems under
constant or periodic workload

In Chapter 3 the emphasis was on studying the more general properties of systems characterized

by a new modeling methodology. This chapter derives some important properties for systems for
which some more information is available. The system workload will be assumed now to be either

constant or periodic. Nevertheless, it should be clear that periodicity or invariance is only average
behavior. The actual failure rate is still assumed to be a stochastic process.

4.1. Case I - Constant workload

If the workload of the system is constant and the system is operating in steady state, it is reasonable

to assume that the expected number of requests arriving to the kernel per unit time, P(t) will be equal

to a constant p. In this case, the probability of observing n requests in a time interval (t2.tl) = T is given

by (3.11). Therefore, X, becomes a stationary Gaussian process with mean
t+w/2

E:[Xt = -L-E dJ (4,1)

= a + fivE[si] (4.2)

= a + . m (4.3)

where m is the average fraction of time in kernel mode. Define then,

E[X] A q (4.4)

and

E-A,] =qt (4.5)

Since Xt is stationary, its autocorrelation function RX(s,t) depends only on the differencet = Is-t and,

from (3.102),
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Var[ 2] 2j (t-i) [RXX(.r) .(2] d-t (4.6)

Let now

Yt = Xt q (4.7)

where y, is a stationary, zero mean, Gaussian process, and

Var[Xt] = 2 (t-') Ryy(,r) d (4.8)

The equivalent nonhomogeneous failure process has then the following important properties:

Corollary 1: Let N be a failure process with failure rate process as defined in (3.10)
with constant workload (r(t) = v) such that the failure rate can be approximated by

Xt q Q + yy (4.9)

where Yt is a zero mean stationary Gaussian process. Define
00

W foo Ryy ,)dd" (4.10)

The statistics of the time to failure are then equal to the statistics of the time to failure of a
nonhomogeneous Poisson process with hazard function h(t) such that

1. h(O) = q

2. lim h(t) = q. ,W>O
t-4.00O

3. If Ryy (T) is nonnegative everywhere, then h(t) is nonincreasing.

PROOF : The hazard function of the equivalent process is given by (3.105). Substituting (4.6) and

(4.5) in (3.105),

h(t) = q" Ryy ,r) dr (4.11)

and h(O) = q. For real processes, the autocorrelation is even and

lim h(t) = q- < h(O) (4.12)
t~ao 2

Note that W>O because if Syy(w) is the power spectrum of y.

S () 0 Ry(r-) e dr (4.13)

then W = S yy(0), which must be nonnegative for any phisical process.

IIIy y I = , ,=. .- 'T l - - . . = = . . .



SPECIALIZATION TO SYSTEMS UNDER

CONSTANT OR PERIODIC WORKLOAD 53

Finally, if the autocorreation function is nonnegative its integral is nondecreasing and h(t) as given

in (4.11) must be nonincreasing. I

4.1.1. Examples

A complete family of distributions can now be obtained for the case of constant workload but

different autocorrelation functions. The only restrictions are that being real processes, the

autocorrelation functions must be even, positive definite, with a maximum at r = 0 and their integral

over the real line must be nonnegative and bounded. The following examples illustrate some types of

distribu ions that can be obtained under the assumption of constant workload.

4.1.1.1. Example 1. Exponentially decreasing hazard function -The doubly exponential

distribution

If

Ry(,T) =- W ft e(4.14)

then, the PDF of the time to failure is given by

* wq--! ) ± ( - -8r
Plt,)=1-e 2 [et (4.15)

and its hazard function is

h([r)-q - [e e" 1 (4.16)
2

h(OO) = q (4.17)2

Note that, as for any nonhomogeneous Poisson process, the hazard function is the derivative of the

exponent in the PDF. In particular, if q = = 1, W = 2,

P(t1 ') - 1 - a (4.18)

h(t) = e (4.19)

which is the doubly exponential distribution, one of the three possible (maximum) extreme value

distributions (given that tf must be nonnegative). Maximum extreme value distributions are obtained

assuming that a system is formed by a collection of n identical modules operating in parallel. The

system fails only when all the modules fail and the distribution of the time to system failure becomes

the distribution of the maximum time to failure for the n modules. As n approaches infinity, the
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distribution of the system time to failure converges in distribution either to an exponential, a Weibull

distribution, or to the distribution given in (4.18) [Barlow 75].

More generally, if

k -eS (4.20)

then,
(q. ik=l " ,r ' ik _11.-e

"  I'

P(tf,_5r) = 1-e T - p 2  (4.21)

h(t)= 1 - p it  
(4.22)

This last distribution is commonly used in nuclear medicine to characterize the light pulses due to the

absorption of gamma radiation emanating from radioactive tracers. The hazard function reflects

physiological transport phenomena due to blood flow rate, metabolic exchange rates, and lung

ventilation [Sheppard 621.

4.1.1.2. Example 2. The exponential distribution - white noise failure rate

If t is white noise;

R - W 8(r) (4.23)
yy 2

where 8(t) is the Dirac delta function, then
w

P(tf_<r) = 1- e ( (4.24)

h(t) = qW (4.25)2

That is, the PDF degenerates into an exponential distribution. Note that its parameter is not equal to

the mean failure rate (q) but to the mean failure rate minus the "power" of the process Xt , W/2.

4.1.1.3. Example 3. Pareto distribution

Assume that

R (.0 (4.26)R ) e 1)2-a
then I
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(q-a,)r-r In (pit + 1)

P(t=<T) 1 - e (4.27)

1 e (4.28)

(fit+ 1)a
In particular, if m = a/,

P(tf<') 1 (4.29)
(P/t+ 1)a

h(t) =%/ (4.30)
ot+ 1

which is the Pareto distribution. The Pareto distribution is used to characterize clinical data relating to

the probability of survival of individuals belonging to some populations. For instance, the Pareto

distribution is postulated as the best distribution characterizing the probability that a patient waiting

for a heart transplant (because of unavailable donors or other reasons) will die before receiving the

heart transplant [Turnbull 74].

The choice of the Pareto distribution or distributions of the type (4.15) for analysis of survival data is

common, and it is based mainly on heuristics. Hence, the present methodology justifies such choices

whenever the actual failure rate can be approximated by a stationary Gaussian process with

autocorrelation function given in (4.26).

4.1.1.4. Example 4. An intensity process with infinite energy - The Weibull distribution

Consider now the following sequence of stochastic processes. yl n) is a stationary Gaussian

process with mean

q aX (4.31)

and autocorrelation function

R (ij = (1.a)aX\2  (4.32)
Rynn)- (,X(t + 1/n

where a<1. Then,

Pn(t <T) = 1 - e (4.33)

hn(t ) = aX (4.34)
(X(t + 1/n))1"=

Now let n go to 00 and
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Pn(tf1 ") = 1 e (4.35)nx
im hn(t) = (4.36)

n.-- o (,t)1l-

which is the Weibull distribution. Note that as n-- 00 both the mean value and the variance of y (n) also

go to 00. Hence, the process

Yt = lim yn (4.37)
n-*0

is not physically realizable, since it has infinite energy. However, the fact that a limiting distribution

exists for Pn(tf<5 r) indicates that the Weibull distribution may be the right choice for characterizing

doubly stochastic Poisson processes with intensity processes that have very large mean and

variance.

4.1.2. Discussion

These and other possible distributions are summarized in Table 4-1. The fact of considering the

failure rate of a system to be a stationary Gaussian process is therefore a unifying method for

obtaining a complete family of distributions commonly used in reliability theorey. Some more insight

can be gained by careful examination of the similarities and differences between these distributions.

4.1.2.1. The distinctive property of white noise

The main difference between white noise and any other stationary Gaussian process is that of

predictability. The best predictor (in a mean square sense) of yt based on ya, s < t, is E[ytly s = J]. In

general, for a stationary Gaussian process,
Ryy(t-s)

E(Ytly = fl = R (4.38)
a y2y

(QWong 791, p. 64). However, if yt is white noise,

E[ytlys = t] = E[yt] = 0 if s~t (4.39)

White noise future values are totally unpredictable no matter how much information has been

accumulated about its past behavior. On the other hand, for a nonwhite noise Gaussian processes

there always exist constants a(n) such that [Breiman 681

E[y( k i (4.40) IN
n+,1 n
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4.1.2.2. The rate of convergence to a Wiener process

As for the meaning of having a hazard function whose asymptotic value is smaller than the mean

failure rate, note that the function
p

f(t) = Jfo Ryy(T) d'- (4.41)

is in fact the rate at which A t converges to a Wiener process. In effect, note that

h(OO) = q-(4.42)
2

is the hazard function that would be obtained if y, were white noise and A, were a Wiener process.

4.1.2.3. A different but equivalent conceptual framework

It is interesting to note how some of the distributions given in Table 4-1 can be obtained in a

completely different way. Assume that the POF of the time to failure is exponentially distributed with

parameter X, but that X is a random variable. That is, once the system is started ,X is chosen at random

from a known distribution and remains constant until the system fails. Every time that the system is

restarted, a new value of X is randomly chosen. The PDF of the time to failures is in this case given by

P(tf:.-r) = E{P(tfTIjX)} = E . e (4.43)

where the expectation is taken with respect the statistics of X. It was first derived by [Harris 68] that,

for instance, if X is Gamma distributed,

p"(x) = a )- (4.44)

then P(tf1 r) becomes the Pareto distribution. Similarly, other PDFs can be derived by assuming

different distributions for X.

If the failure process is a renewal process, the following three types of systems have identical

statistics:

e Systems for which the failure process is a doubly stochastic Poisson process, = q + Yt

and Ryy(r) leads to an equivalent hazard function h(t).

* Systems with a random hazard function A such that p,(x) leads to the same equivalent
hazard function h(t).

* Systems for which the failure process is a nonhomogeneous Poisson process with hazard
function h(t).
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Figure 4-1: Three possible failure rates, all leading to the same statistics
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Figure 4-1 ilustrates the three types of systems. Which of the above three con~ceptual framneworks

is more appropiate to work with will have to be decided usually after practical considerations.

Probabilistically, the three types of systems are indistinguishable.

4.2. Case 11 - Periodic workload (the Cyclostationary process)

Assume now that p(t) is a periodic function of t, that is

P(t) = ,.(t+T) (4.45)

and

Xt = a IjEs]R tW2t+W2 + 4~BSR (4.46)

If P(t) varies slowly enough such that it can be considered constant in any time interval [t,t + w]

E[t a + 8,v(t)E[sj] (4.47)

where q(t) is also periodic with period T, and
t2

Also,

RXX(s't) =EEX37Xt]

=q(s)q(t) + .- E[ S R SR (4.50)
W2 t-W/2,t + W/21 Is-w/ 2, + W/21

where

00 OrO i+n+w,(s)EL SR t-/t+W2 SR 13W21+ W/2 En= 2. 1 P(RIsm = n) Zj a Y..,.=.,+ Ejxjx,] (4.51)

Note that q(t) = q(t + T) and that Rxx(s,t.) = RXX(s + Tjt + T). Thus, X is a cyclostationary process. As. it

has been remarked by (Gardner 781, it N,,t is a doubly stochastic Poisson process with

cyclostationary intensity process, N is itself cyclostationary, that is

E[N CN~t+T~t+Tll(4.52)

(the remark in [Gardner 78) is for the more general concept of processes which are almost
cyclostationary in the wide sense). The fact that NDO is itself cyclostationary explains the data

reported by [Butner 80], where the number of system failures as a function of time of day reflects the
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Autocorrelation function, Hazard function

R(a W~. 8(,r) h(t) q -q
XX 2 2

m Exponential distribution

1* t

R -(r w- er ~)[I-e
2e2

m Doubly exponential distribution

7 t

w
R )= 0 if IrjI T m h(t) = 2if t>T

XX 

m-W /2

7t

Table 4-1: Examples of different autocorrelation functions and the
corresponding hazard functions of the equivalent failure process
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Autocorrelation function Hazard function

m

1* t

m Prtdsribution

1* t

R (.r) = (I)A ) a

Weibull distribution

1' t
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average workload variations over a one day period. This is a consequence of having a cyclostationary

intensity process and does not imply a strictly periodic failure rate.

Define now,

Yt = X -t q(t) (4.53)

and note that

0 VQ i+n+wr(s)(4)
R (s,t) = oP(R-0 t]= n ) 

-i= 1 E[x-xwj (4.54)

By the properties of an a.mixing sequence, E[xixj] approaches zero as the difference li-il increases.

Thus, R yy(s,t) should approach zero as the difference Is-ti increases. Further, note that

R (tt) = a2(t' = V(t) _ [E[si]2 + a2] (4.55)

Thus, R y(s,t) can be expressed as

R (s,t) - a (s)a y(t) 17(it-sI) (4.56)
yy y

where 71(x) is a function of x such that "q(O) = 1 and q(oo) = 0. Therefore,

Var[X = t 2 I 2 Ryy(s,t) ds dt (4.57)

f t2 f 2 a (s)a (t)i(s-t) ds dt (4.58)

which after some algebraic manipulations can be shown to be equal to

Var[Atl,t2] . lyltl,t 21  2ay(t)71(lt2"tl) dt-ayl(tj )  2 .yl(ti t),qlt) t(.9ft 45

where
lt

,(t1 t) = 4 oy(,r) dr (4.60)

4.2.1. Two important properties of the cyclostationary Poisson process

Although not as simple as the case of stationarity intensity, closed form expressions for the hazard

function and PDF of the time to failure for cyclostationary failure processes can be obtained. The

only restriction is that now the hazard function and PDF are conditioned to the starting time value.

Corollary 2: Let N [t be a doubly stochastic Poisson process with cylostationary
intensity process A sucH'tat
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Xt = q(t) + yt (4.61)

R (s,t) = a y(s)ay(t)7(Is-tD) (4.62)

q(t) = q(t + T) a y(t) = a y(t + T) (4.63)

The hazard function of the equivalent nonhomogeneous Poisson process given that the
system is started at time t. isS

h(tlts = q(t) - cry(t) ft cry(l") il(It-r'i) d " (4.64)

and its conditional PDF is

Plt, -'ts) = 1 exp {f q(t) dt- Xy(t 3 ,T) f y (t) il(I'-ti) dt

+ Oy(T) Iy(ts,t) -q(t) dt ( (4.65)

PROOF: From (4.58), (3.101), and (3.103), after (substantial) algebraic manipulations. U

The above hazard function and PDF are conditioned to the starting time value t.. To obtain the

unconditional functions, the following expectations should be computed.
00

h(t) = f Pt(u) h(t lt = u) du (4.66)

fo o

00
P(t,<r) =f Ps (u) P(t,- -r-t = u)du (4.67)

where pI (u) is the pdf of the starting time. The following theorem gives the value of this distribution.

Its simplicity has very important practical implications.

Theorem 3: Let Nrt I be a doubly stochastic Poisson process with intensity given in
(4.61) through (4.63). Alume that the system is observed for n consecutive cycles and let
Pn(ts!,) denote the PDF of the system start time during these n cycles. Then

P_ Nr- P(t.i) = qs) ds fO <-<T (4.68)J q(s) ds

or, equivalently,
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pt(u) ai rnP"' (u) = q(u) (4.69)

nT nT

urn 1 J a,(S)a,(t) q(jS-tI) ds; dt = 0 (4.70)
fl. 0fl 0 2

PROOF: Assume that n, failures have been observed in n cycles. Then,

p n (uIX.0 tnT;N10 n=rt) U i =1,...,nf (4.71)
I f x ydy

Since tI, t s. , the above density is also the pci! of t 3 , i= 2,., + 1. Further, note that the tf are
mutually independent and that the above pdf is the same for any value of nf >0. Thus,

p n (Ujy,O:t~nT) = . Q(u) YU (472/ Tf ~ n T j 4 . 2

Since q(t) =q(t +T)

p," (ujy,O:5t:nT) f n q(u') nr + fr Ufn (4.73)

where 31nj q(s) ds + fo ys ds nj0 q(s) ds + f Y3ds

Ua= unTj (4.74)

Hence,

p (u)=lim E( sd q(u')

j~ )d + (1 /n) y ds

+ E (4.75)
nT

Now, if q(s) ds + (I /n)! ys ds

S n (1 (/n)L ds (4.76)

nis a Gaussian random variable with

*1l
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E[sn] 0 (4.77)
nT nT

Var[sr,, = 1 o(tllls'tl) ds dt (4.78)

Therefore, if (4.70) holds, sn = 0 with probability one as n-* 00 and

lim E ( q(u') _ q(u') (4.79)
- 0 O q(s) ds + (1/n) ds q(s) ds

As for the second term in (4.75), note that
nT

E[ynSn] = 2 / R(Iv-ul) dv (4.80)

Since Yn is a physical process, the integral in (4.80) remains bounded as the upper limit goes to 00.

Therefore yn and sn become uncorrelated and independent (both are Gaussian random variables) as

n--* 00. Thus,

lim E =u/n 0 (4.81)n-..o T rnT

no q(s)ds + (1/n) yds

which completes the proof. o

4.3. Summary

The analysis of systems under constant average workload has lead to a complete family of

distributions commonly used in reliability theory. The distinctive property between different

distributions is the autocorrelation function of the intensity process. The fact that all distributions

have limiting hazard function values smaller than the average failure rate is of particular importance.

The limiting hazard function value is the value that would be obtained if the failure rate were white

noise. The rate of convergence of the integrated failure rate to a Wiener process has been shown to

be the integral of the autocorrelation function.

It is important to note that the rate of convergence to a Wiener process is one of the parameters

characterizing the reliability of the system under study. Consider two identical systems, A and B, such

that the failure rate of system A is white noise, while the failure rate of system B is some other

Gaussian process. Although both systems can do the same amount of work in the same time (in the

sense that the expected value of the integrated failure rate is the same) system A is more reliable than

system B. The integral of the failure rate for system A is a Wiener process no matter how short the
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integration interval is. Therefore, system A reaches the qs~mptotic (minimum) value of its hazard

function instantly. This point will be elaborated later Sn in the thesis and will be illustrated with

numerical examples.

The analysis of systems under periodic workload has not resulted in so concise results. However,

an important property of cyclostationary failure processes is that, for systems operating after many

cycles, the distribution of the syste( failure time over one cycle converges to the periodic component

of the failure rate. This fact wi lead in Chapter 7 to the establishement of cost functions on which

cost-benefit analysis of fault-tolerance can be based.

Throught the Chapter it has been assumed that the failure rate can be approximated by a

deterministic function of time plus a zero mean Gaussian process,

Xt = q(t) + yt (4.82)

However, frorfA chapter 3 it is known that

Xt = Pu + "(PkPu + Ps)(m(t) + xt) (4.83)

where m(t) + xt is the fraction of time in kernel mode in the interval [t-W/2,t + W/2] and Pu' Pk' PS are

the coefficients establishing the sensitivity of the system to different failures depending on the system

state. Therefore, Xz can be rewritten as

Xt = K1 + K 2(m(t) + xt) (4.84)

Hence, the failure process can be characterized by a doubly stochastic Poisson process with

intensity

Xt a f(m(t),xtFX) (4.85)

where f0 is an arbitrary function and is a vector of coefficients. In all cases, the PFD of the time to

failure can be expressed as

Plt,< rltd a .-e" h(t) dt (4.88)

where h(t) is the hazard function of the equivalent nonhomogeneous process.
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Chapter 5
Failure process analysis of a real system

5.1. System characteristics and measuring tools

In order to verify that the model described in Chapter 3 leads to a better fit to failure processes than

previous work, an experiment was designed. Data was acquired for both the failure processes and

the load of a general purpose time sharing system. The system chosen was the CMU-A, a PDP-10

used by the Computer Science Department at Carnegie-Mellon University as its main general purpose

computational system. The system consists of a KL-10 processor, one megaword of memory, eight

disk drives totaling 1600 megabytes of online storage and two magnetic tape drives. The system runs

a slightly modified version of the standard TOPS-10 operating system [Bell 781.

The software packages used to instrument the experiment are illustrated in Figure 5-1. Information

about failures is obtained from an online error log file maintained by a system program, which records

the information produced by different error formatting routines. Entries are made to this file for each

hardware error detected in the system, for system reloads, for disk performance statistics, and so on

[Digital 781. The error log is later processed by SEADS, a FORTRAN package which lists the times of

detection of errors associated with a particular resource. In order to obtain accurate information

about the use of the system, a special SAIL program, SYSMON, was written that periodically samples

the values of 30 system parameters. The files generated by SYSMON are later processed by another

SAIL package, READSY, which computes the periodic component and autocorrelation function of the

utilization function of a particular system resource. The information generated by SEADS and

READSY is then processed by an APL package (POWELL) which estimates the maximum likelihood

parameters of the pdf of the time to failure of a particular resource. Finally, in a separate SAIL

package, C2TST, the values predicted by the cyclostationary model and other models described in

Section 4 are compared with the information stored in the error log according to a X2 goodness-of-fit

test.
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The value of the accumulated time spent in kernel mode is obtained by executing a Monitor Call

and includes the time spent in clock queue processing, short command processing, swapping and

scheduling decisions, and software context switching [Digital 77]. This value does not include

Monitor Call execution nor I/0 interrupt times. The sampled value is not exactly the time that the

system is executing in kernel mode, but it is close enough for our purposes.

5.2. Model parameterization

According to the results presented in Chapter 3, the failure process of a Time Sharing computing

system can be characterized by a doubly stochastic Poisson process with intensity process

Xt = f(m(t),xtX) (5.1)

where

kt = m(t) + xt  (5.2)

is the average fraction of time spent in kernel mode in an interval of duration W centered at time t and

t'is a vector of parameters. In order to parameterize our model, the values of Xt must be sampled from

real systems, and from these samples m(t) and the autocorrelation function of xt must be estimated.

Further, methods for estimating the maximum likelihood values of 1Cmust also be provided.

5.2.1. Sampling the intensity process

The operating system automatically measures the cumulative time spent in kernel mode. That

means that the value of

Kt- t= k d-r (5.3)

can be easily sampled. If the value of K, are sampled at times {tn-w/2, tn +W/21 tn + 1-W/2 '**' samples of

the observable intensity process are immediately available as

ktn 0 tn+W/2" Ktn-W/2 (5.4)

where tn = ts + nAt and t. is the system start time.

I I I I II I II I I I I II I ' l I l " [ i , . . .
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TOPS- 1

ERROR
SYSMON FORMATTING

ROUTINES

SYSTEM [0'ERROR
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FILESLO

READSY SEADS

INTER.
LISTING
FILES

TEST

PDF

Figure 5-1: Software packages used in the validation of the cyclostationary
modeling methodology.
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5.2.2. Estimating the deterministic component

The expected value of k, m(t), is a deterministic function of time with period T = 24 hours. Thus,

m(t) can easily be estimated from the samples k n. If data has been collected for N days, let

1' ' N  (5.5)

m(t) will be then approximated by a finite Fourier series expansion, that is,

m(t) = m + "n cn sin(nwt + TOn) (5.6)

where the following constants have been used

T
2w M=1o m'(t)dt (5.7)

Cn= (a2 + b 2  ep arctan 2 (5.8)
nb n.

a. T mft o~ t d n T= . m'(t) coslnot) dt bn = 2 m'(t) sin(nwt ) dt (5.9)

5.2.3. Autocorrelation function estimation

Given an ergodic and stationary process zt, the problem is to estimate the function
T

RO (r)=lim zt+Tztdt (5.10)

For a finite record of observed values ztn, n = 1,..., N,, the autocorrelation function is usually estimated

using the expression

1~n .2 '-.. iN 1 (5.11)R zz (n) =1 % Z + nzti

This estimate is intuitive except for the factor 1/n. Since N-n terms are summed, it seems that 1/(N-n)

would be more exact. In fact (5.11) is a biased estimator of the real autocorrelation function. However,

its expected error is smaller than the expected error that would be obtained using the (unbiased)

estimator with factor 1/(N-n) [Jenkins 681.

I
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In the cases presented in this thesis the values of z are not directly observable, For tile sampling

of the fraction of time in Kernel mode, what is measured is the average fraction of time in Kernel mode

during a period of duration W. The measured values are not the values of z , but the values of the

process
ft n + W/2

=tn  tn.W/2 z dt (5.12)

As will be shown in the following sections, in the two cases studied in this thesis the autocorrelation

function suggests an approximation of the form

(t) = al 1e + a 2 5.13)

The problem is then to estimate the values of the a,, from the observed values of 1n. 1

R--(t = a'le" 1t + a'2 e 'fl2 1ql  (5.14)

it is easy to show that

Rzz(t) = ae 'f t + a 2 e'  (5.15)

where
i 2 ail

ai = 2(cosh(#iW). 1] (5.16)

The problem is then to estimate the values of the a',, .8, using (5.11) and the observed values of z

and use (5.16) to obtain the values of a i of the autocorrelation function of z. n

Unfortunately it will not always be possible to follow this procedure. The accuracy of the estimated

autocorrelation function is limited basically by two factors : the sampling frequency and the length of

the available record, N. Although many techniques exist for power spectrum estimation that take into

account these two factors [Oppenheim 75] (the power spectrum is the Fourier transform of the

autocorrelation function), no techniques are available for correcting the estimates of the

autocorrelation function itself. If the sampling frequency is comparable to the bandwidth of the power

spectrum, the power spectrum estimate may be poor due to aliasing. Under these conditions, the

estimate of the autocorrelation function given by (5.11) may take negative values.
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5.2.4. Maximum likelihood estimation of model coefficients

The general problem of parameter estimation for doubly stochastic Poisson processes can be

stated as follows. Let {N(t);t>to} be a doubly stochastic Poisson counting process with intensity

(t,xt,,K, where xt is a stochastic process and ' = (K1 ,K2 ......... KM) is a vector of unknown parameters.

The occurrence density function that a given realization of the process has a failure at time t Iif it has

been started at time ts is, given by

p(tfXKX 7 ,ts<(r<tf) = xtf,xt,j' e( x (5.17)

If n failures are observed at times tf.,tf with associated starting times ts. , the probabilitytf1... tn t 1, .. ~

density function of observing such set of events is

p n 1tf1 ... t IKn',xT.tsi<t.< i ,= 1 ... n) = IIn 1 Plts) X(tfi,xf It-) eA. 5.18)

where P(t ) is the a priori probability that the system is started at time t . Taking the expectation with

respect the statistics of xt we can obtain,

p~n(f ....tfn .. t~n E R n~ P(t )X(tf ix(t ,) e't M" "d~ (5.19)

f n I fl n i i Si

The maximum likelihood estimate "K'= (K1c,K ......... Km ) of -Kin terms of a particular realization of the

process is by definition the value of "that maximizes the above density function [Melsa 781. That is,

,1.tfnt ,J n) will be maximum for As it has been shown in Chapter 3, the pdf

of the time to failure can be written as

p(t) = h(t,-) e .t (5.20)

the function to be maximized is then

P(n t ) = I'= 1 P(t ) h(t -") e ' h(.ld , (5.21)

1= n, ti s (5.21

Note that this problem is equivalent to minimizing the function

L(K") = (E2=l f'h(r,)dT) - (cii In(h(t ,,)) (5.22)

subject to the constraints
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h(tfi)>0 i= 1 ....... n (5.23)

Since closed form expressions for the components of - at the minimum are not generaly available,

this is a typical nonlinear programming problem, subject to nonlinear inequality constraints. Since this

problem will have to be solved every time that the failure process of a resource has to be modeled for

a real system, particular care has been taken in finding an efficient procedure for the location of

minimums of functions of the type (5.22). The algorithm used is a slightly modified version of a

variable metric algorithm proposed by [Powell 78]. The original Powell algorithm occasionally

requires the evaluation of the objective function outside the constraints and has been modified such

that the maximum step size at each iteration never leads to a point outside the constraints. The

algorithm has been implemented as an APL package that requires the definitions of the objective

function, gradient, and constraints. Several objective functions corresponding to different

distributions were given ;n [Castillo 80b].

5.2.5. Error correction

The last practical consideration to be treated in this sectioh deals with the approximation of kt as a

Gaussian random variable. If kt is a Gaussian random variable with mean m(t) and variance a2 , there

is a finite probability that kt<0

pm() .x
2 /2a 2

P(k1  (21r)1/2 oo . e dx (5.24)

However, since k, is the sum of positive random variables, it can never actually be negative. If kt can

never be smaller that a nonnegative value kiin, a better approximation of kt is

k rn(t) + xt ( 5.(2) + 5k)in
I= kmiin  otherise (.5

Define then

kt = re(t) + xt- xt= (5.26)

where

c = r(t) + xt.krn if m(t)k+ x((k527
t= t itf () +t i (5.27)

The problem is therefore to evaluate the expectation

Fi
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Efel t t) (5.28)

Note that the integral

xcdt (5.29)

tS
is equal to the excess area under the peaks of x Ibelow a threshold krn-m(t) (see Figure 5.2).

k = m(t) + xI t ,t
a'
:', I'

xi 

kmi I Vy

Figure 5-2: Relationship between xIIand xI

It is shown in (Stratonovich 67] that if the duration of the peaks is much smaller than the time

between peaks, the occurrence times of peaks above a threshold c(t) can be approximated by a

Poisson process with intensity

11t (R 2 '' *c2(t/2a2 (5.30)
2

where

a8r2 r=O

and v2 is the variance of xV Since the presence of peaks can be characterized as a Poisson process,

the excess areas under the peaks can be viewed as a marked Poisson process (see [Snyder 751, Ch.

7) with nondenumerable mark space. Let s, denote the area under the i-th peak in the interval Is,t]. s,
will be the mark associated with the i-th point (peak) in (st].

(R2112 .c2t)/2-
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The statistics of the sum of the areas under the peaks are equivalent to the statistics of the mark.

accumulator process,

f Xc sj (5.32)

where N,,,.,] is the number of peaks in [t, ] . The above expectation can therefore be rewritten as

((Snyder 75],pl31)

EleL t} = P(NtS"T =0) + Tn =__ P(N[tsV=n)E fe .=INCSt r]=n) (5.33)

Note that

Not e thatE{ e 1"3n lNt,, =n) = E (EF e E =i' I N s, = n;t1, t2  ... tN N it,- = n ) (5.34)

Given N!t?,r] = n I t 1 ... tN are a collection of independent, identically distributed random variables

((Snyder 75], p. 65), the cbmmon distribution being

ptW xT)" ts<x .< (535)

J i"(t) dt
p0

Therefore, if.the areas under different peaks are mutually independent,

E[e.N =nt...,t ] [Efe ]n (5.36)
S tsIT

and, if the i-th peak occurs at time ti

E(e } = I pt(x) E[e tilt= x] dx (5.37)

= s pt(X)f Pst (X IL = x) e X dX dx 
(5.38)

where

-L 3C2()) ,1/2 1/3p X)322 '1 23 -/3' 2  X1

S 3 C21 a ] 2 /3 X. e 2 203 (5.39)

and

C( in k m(t) (5.40)

If s <<1 for all i, the following approximation can be madeii"
E es) - 1+ pt (x)E[s tit = x]dx (5.41)

and
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E[st it = x = / XPs(X) dX (5.42)

= a3 (2, )1/2

c 2(x) R (5.43)
Define then

Etes}) = 1 + t8 ,) (544)

where
2 2a 3(2wr/Rd112 -C e.Crl)la 2

~ t~T) *~()/a Jd-r (5.45)

ef e r/2 d-r c c2(r)

Therefore,

lr

E = P(N"0) n. I-- P(N +n) 1 (tr)jE~e E 0 n)(5.46)

and, since N ts] is a Poisson process with intensity -q(t),

x C d 00 [[l, t(t,+,.) f t dt 7)
E(e It 'I. n=O [t. e"'+ nt)(d (5.47)

a. 71t) (5.48)

Note that if c,) a c independent of r and x, is stationaimy,

E{e xdt) . P(C)(-l

where

p(c) = 3(V/2),"2
C 2
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5.3. Characterization of the time to System Failure

In this section the modeling methodology presented in Chapter 3 will be applied to characterize the

reliability of the system described in Section 4.1. All the necessary techniques to parameterize the

model have been given in Section 4.2. An exact characterization will be developed in Section 4.3.1,

where the periodicity of the workload is taken into account. In Section 4.3.2 the model is simplified

giving the characterization that would result from assuming a constant workload, and therefore a

stationary intensity process. Figures 5-3 through 5.7 summarize the behavior observed of the CMU-A.

Figure 5-3 gives the actual values of the average fraction of time in kernel mode, kt , averaged over

one second and sampled every five minutes for five consecutive weekdays. The periodicity of the

mean is clear from this figure. As a further indication that kt can be approximated by a cyclostationary

process, Figure 5-4 shows the estimated autocorrelation function of kt, Rkk('r), according to equation

(5.11). Rkk(.r) is obviously periodic with a period of 24 hours. The estimated autocorrelation function

was obtained from a record of samples kt covering 60 days of normal system operation.
n

Figure 5-5 shows the estimated average fraction of time in kernel mode m'(t), and its Fourier series

expansion, m(t), obtained as described in Section 5.2.2. Figure 5-6 shows the histogram of system

failures as a function of time of day. To study the properties of the stochastic component, x, , a plot of

the variance a2(t) as a function of time of day is given in Figure 5-7. The variance is about two orders

of magnitude smaller than the mean m(t). Therefore, the error correction term given in Section 5.2.5.

should be very small. Note also that the variance is approximately constant over a one day period. The

peak between 9:00 and 10:00 is probably due to the fact that the system is started between those

times after daily preventive maintenance. Therefore, x, can be approximated by a stationary Gaussian

process (although the results given in Chapter 4 predict a periodic variance, this periodicity is not

noticeable here).

In summary, the instantaneous fraction of time in kernel mode can be approximated by

kt = m(t) + xt  (5.49)

where m(t) is periodic, x, stationary, and kt cyclostationary.

AW,
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Figure 5-6: Number of system failures as a function of time of day
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5.3.1. The cyclostationary model

With the notation developed in Chapter 3, recall that if 7 is the failure rate of a Time Sharing

system,

t = Pu + (PkcPu + ps)kt (5.50)

where k is the fraction of time in kernel mode averaged in an interval [t-W/2,t + W/21 and P Pk' and

P. are different parameters reflecting the sensitivity of the system to transient faults and software

faults. To remember the meaning of each parameter, Xt will be rewritten as

At = Chw + (Shw + ssw)kt (5.51)

Chw is a constant (workload independent) failure rate due to hardware transient faults, shw is a

sensitivity coefficient relating the kernel usage with the (workload dependent) failure rate due to

transients, and Ssw is an analogous sensitivity coefficient for the failure rate due to software faults.

The autocorrelation function of the process xt is shown in Figure 5-8 suggesting that an

approximation of the form

RXX(t) = ale -#IN + a2e p 2i q  (5.52)

is appropriate to describe it. Using the results given in Chapter 3, the PDF of the time to failure

conditioned to a starting time t. is given by

-0)t* (t) dt 1 - 1 (t-e 5  [2 I tt
P(t<tflts) = 1 e(hwl SSyr Ptf'ts) " 2 (5.53)

where the following constants have been defined

= SS + 5hw (5.54)

8l 2 al (5.55)

82 112 (5.56)d te Sy 
F82and the unconditional PDF is given by
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'(aN-E-aN)T - a8~ syl %Y2 -e2

Psy(ttT) 1- (psy(i") e'SY ' s yl " sy 2  1- (5.57)

where

asy (ShW+ Sw) + Chw-P(Shw+Ssw1kmin) (5.58)

arsy= (Ssw + s 2 al (5.59)

O'S =(ssw + Shw)2 a2 r + t (5.60)

1 P2T m(s)da
ps(yMt) = m(-)e'/ dr (5.61)

4 m(t) dt

5.3.2. The stationary approximation

Some approximations can be made leading to simpler expressions for the PDF of the time to failure.

In particular, the periodicity of the workload will be neglected and the system failure rate will be

assumed to be

Xt = c +skt (5.62)

where

kt = m + xt  (5.63)

and xt is a stationary Gaussian process with autocorrelation function

R (')= - Q(ITI) (5.64)

If this autocorrelation function is of the form

R,=(-) = a e 1  + a 2e (5.65)

using the results of section 3.5.1.2 the following expressions are obtained for the PDF and hazard

function of the time to system failure
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P(tf<T) = -expl -( c + sm -s s 2 -z ) T

#I fl',s 2 2..[1.e fi"] o'°'[e""2] 1(5.66)
h(t) = c + sms 2 a i - e'2J (5.67)

Table 5-1 shows the maximum likelihood values for both the Stationary and Cyclostationary

approximations computed from a history of 243 system failures (crashes) from December of 1979 to

May 1980. After performing a X 2 goodness-of-fit test between the predicted and observed distribution

of failures, both approximations gave levels of confidence larger than 0.05, suggesting the

acceptance of both distributions as good characterizations of the PDF of the time to failure.

Figure 5-9 shows the hazard function of the equivalent nonhomogeneous process Poisson process

for both the Cyclostationary and Stationary approximations. The periodic component of the failure

rate has been dampened so much that only the exponentially decreasing effect can be observed, and

the Cyclostationary and Stationary hazard functions are undistinguishable.

A further approximation can be made. If the autocorrelation function is simplified to a single

exponential,

rx,(,") = ae' (5.68)

then

-(c +sms 2 --. T s2 - -
P(tf:5") 1 -e P2  (5.69)

1.e ]  (5.70)
h(t) =c + sm-s--[1e

5.3.3. A further refinement of the cyclostationary model

Equation (5.51) implies that, while the system is in kernel mode, the probability of observing a

failure due to software on a time interval At is

Psw(At) - 8swAt (5.71)

which is a constant independent of the state of the system. This can hardly be a reasonable

L
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Figure 5-9: Hazard function of the equivalent nonhomogeneous Poisson
process describing the system failure process in both the Cyclostationary and
Stationary forms. The two dashed lines indicate the values of the hazard
function at zero and infinity.

Model Parameter Degrees of X2 value X2 Level of
Values Freedom Confidence

Cyclostat. Ssy = 2.23 18 15.89 27.869 0.6
Chw =0.082

Stationary a = 0.08 14 15.89 23.68 0.31
asy1 = 0.073

sy2 = 0'0041
1, = 0.28

02 =0.0039

Table 5-1: Results of applying a X2 goodness-of-fit test for the
Cyclostationary and Stationary models for system failures (crashes). Both
models give levels of confidence larger than 0.05, therefore confirming their
validity as accurate system characterization tools

approximation. If, as described in Chapter 2, software unreliability is mainly due to persistent errors
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deriving from oversimplifying ihe complexity of the data to be processed, Ssw should not be a

constant. In effect, the instantaneous probability of observing a failure due to a software fault should

increase when the system is processing data with large complexity and should decrease when

processing simple data. Thus, Ssw should be a time varying function Ssw(t) whose instantaneous value

will depend on the average complexity of the data to be processed at time t. The problem is therefore

how to characterize data complexity since, if c(t) is a suitable descriptor of the complexity of the data

at time t,

SSW(t) = f(c(t))

where f(x) is a nondecreasing function of x. The most easily measurable descriptor of data complexity

is the average time spent in kernel mode, m(t). In effect, a large value of m(t) indicates a highly loaded

system, impliying therefore a large number of decisions to be taken by the kernel per unit time and

continuous updating of its data structures. A small value of m(t) indicates a lightly loaded system, with

relatively static and half empty data structures. Note that the instantaneous value of the fraction of

time in kernel mode, kt is not a good descriptor of data complexity because the fact that for a second

the kernel has been executed a very short period of time is not meaningful (perhaps a large number of

jobs were just waiting for I/O completion).

sw(t) will therefore be assumed to be a nondecreasing function of m(t). Again for simplicity a linear

relationship will be assumed such that

sw(t) = ss m(t) + SSW2  (5.72)

Xt = Chw + [s y + s w1m(t)][m(t) + xt] (5.73)

where s hw + Sw2 has been noted s.y. If

q(t)= Ssy + sawIm(t) (5.74)

then

Xt a Chw + q(t)m(t) + q(t)xt  (5.75)

a m'(ti) + x't( ) (5.76)

where Wi1 =Chwl K2 ZSsyl K3=SW,9 and c" = (K1,iK2, K3 ). Using the results given in Chapter 3, the PDF

and hazard function of the time to failure are easily obtained. Juts note that I-
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RX'X'(s,t) = E~x',xt] (5.77)

a q(s)q(t)Exx 1  (5.78)

= lat W(s)II(Is-tI) (5.79)

where

a,=t q(t)ax (5.80)

Therefore the POF of the time to system failu re is given by (4.67) evaluated by substituting m(t) by

m'(t) and a X(t) by cr I X(t) in (4.64) and (4.65). Given a set of n observations of system starting and tailing

time {[t 11tf I]; i = 1 ,...,n), according to section 5.2.4, the maximum likelihood estimators of i' is the value

of icwhich minimizes the function

subject to the constraints

h(t JI t) > 0 i = 1 ,...,n (5.82)

xi 0= 1 ,....3 (5.83)

The values of hl(t.,t1 ,K) and H(tt,K") can be obtained from the results presented in Section 3.6.

H(tt,)= m'(t-u~) -7' ( ) tDft -11 +dr : tlo)-~)d (5.84)

siSi i)XI it4 ~)7(t

where
b

Z(a,b) = '(t) dt (5.86)

and in', a',, i?, X', are functions of it.

The minimization of 1(-K) in (5.81) is a well defined non linear programming problem. However, the

relationships between the affected variables are cumbersome. A simpler method to evaluate a good

estimate of -Kwould be helpful.
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5.3.4. A computational shortcut

In Section 3.6.2 it was shown how for a system under periodic workload the distribution of the

system failure time (system start time) as a function of time of day should approach the average

intensity, a linear function of the average workload. Thus, one would expect that for an observation

interval sufficiently long, a histogram of the system failure time as a function of time of day should

approach m'(t). Assume that such a histogram has been evaluated in C(t)

C(t) = n if the number of failures in [t/At,t/At + At ] = n (5.87)

Recall that the system failure rate can be expressed as

X = f(m(t),') + xt(J) (5.88)

Therefore, a possible estimate of Kis the value of K-which minimizes the norm

N() = IC(t),f(m(t)'))I (5.89)

defined in a suitable functional space. In particular, if the norm chosen is Lo,, the estimate of itwill

be that value of "which minimizes the function

N(K) = E [(t)- fmt))] dt (5.90)

Differentiation with respect to Ki , the following system of equations is obtained
T T

L (t) fff~t ftt) = mdt i= 1,...,n (5.91)
2f~t af(m(t),lc) dt = ~ t,ic) a~~)

ka LsJ i

where n is the number of components of K. In particular, if f(m(t),it) is a polynomial of order n-1 on

f(m(t),)= " [m(t)]' (5.92)

the following system of n equations is obtained

= i1ii~j. 1  j=l ... (n (5.93)

where
T

Xi = L C(t)[m(t)]i* dt j= 1 ,...,n (5.94)

T

a= j [m(t)]i' dt i= 1,...,2n-1 (5.95)

sO
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if f(m(t),K) is of the form given in (5.73), a system of three equations is obtained with ic = Chw, 2= Ssy

iK3 = S sw,

12

10. Number of crashes

-f-- f(m(t),k)

8.

6 . ---

4

2-

0 36 9 12 15 1'8 21 24
Time (Hours)

Figure 5-10: Periodic failure rate component compared with a real
histogram of failures over a one day period.

The values of c h' y, and s sw2were obtained from the histogram of failure data shown in 5-6 and

m(t), the average fraction of time in kernel mode. Figure 5.10 shows the histogram of failures and the

function f(m(t),-K)

f(m(t),-) = Chw + S + SSl) m(t) +Saw m2(t) (5.96)
1 2

This result will be used in Chapter 7 to evaluate the contribut;on of software to system unreliability.

5.4. Probability Distribution Function of the Time to Failure of a
File System

The modeling methodology presented in Chapters 3 and 4 can be used to characterize the

reliability of other systems or resources besides a complete Time Sharing system. As a final example

(which will be also validated) the PDF of the time to failure of a file system will be evaluated.

For a file system, the reasoning is that errors can be detected only when accessing it. The

assumptions are that all errors are hardware transients and that the instantaneous failure rate value is
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xdk= f(mdk(t), X dk ,) (5.97)

where

bt = mdk(t) + xdk (5.98)

is the number of blocks accessed in the interval [t.W/2,t + W/2]. Again, it is assumed that mdk is

periodic, x, stationary and that

Sdk + xtdk+ (5.99)

is cyclostationary.

Figure 5-11 shows the results of compiling five days of disk utilization samples into a single 24 hour

period. Along with the estimated average, this figure shows the function mdk(t) obtained from a finite

Fourier series expansion. After substracting from bt the value of mdk(t), the sampled values of the

process x dk are available for estimation of its autocorrelation function.

The estimated autocorrelation of xdk also suggests that an approximation of the form

R (t) = a1e ' ll + a2 e "2l (5.100)

would be appropriate to approximate the real autocorrelation function.

.'0 dkl 'Pit adk2 [-8 2t
Pdk(t<,r) = 1 - odk() • a k2 )t 1 1-e ] 2 1-e (5.101)

where the following constants and functions have been defined

adk = SdkMdk + Cdk - Pdk(Sdk bmin) (5.102)

a1  2 (5.103)
Gdkl = dk

0da2 = 2 5dk (5.104)

p
7+t

T e dk(a) dsJ

kel= j dr (5.105)f M dk(t) dt
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Figure 5-11: Estimated and approximated value of mdk(t)
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Figure 5-12: Histogram of disk failures as a function of time of day.
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The hazard function is given by

h k' dk - 'dkl L1 e I d2L e 1(5.106)dk2dk() aT

Model Parameter Degrees of XLevel of
Values Freedom Confidence

Cyclostat. s. = 14.00 8 8.69 15.07 0.36
c c = 2.01

Stationary a. =2.13 6 8.642 12.592 0.19
a - 1.42
o2c = 4.03
fi =0.59
.8 2 

= 0.21

Table5-2: Results of applying a X2 goodness-of-fit test for the
Cyclostationary and Stationary models with the file system failure data. The
hypothesis that the models are good abstractions for the system behavior is
confirmed since the level of confidence is larger that 0.05 in both cases.

Table 5-2 gives the results of applying a X2 goodness-of-fit test to the file system failure data.

Again, although the Cyclostationary model gives a superior level of confidence the Stationary

approximation also preforms very well. Therefore, if great accuracy is not necessary, some of the

complexity involved in the manipulation of the cyclostationary expressions can be saved by

neglecting the periodic component. Figure 5-13 shows the hazard functions of for both the

Cyclostationary and Stationary approximations. Note the small range of variability due to the periodic

component of the failure rate.

S
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Figure 5-13: Hazard function of the equivalent non homogeneous Poisson

process characterizing the statistics of the time to failure of a file system.

Both hazard functions (according to the Cyclostationary and Stationary

approximations) have been plotted. The Mean Time To Failure is 7 minutes,

that would correspond to a constant hazard function of 0.7 according to the

Exponential model. The two dashed lines at the bottom of the graph enclose

the range of variability of the hazard function due to the periodic component

of the failure rate mdk(t). Note that this range of variation can be neglected

and that the main factor characterizing the hazard function is its decreasing

effect due to the integral of the autocorrelation function Rxdkxdk(i).

5.5. Summary

Both the Cyclostationary and Stationary models have been validated as suitable descriptions of

failure processes in Time Sharing computers. Validation has been performed by applying X2

goodness-of fit tests to the PDF of the time to failure of each model with failure data obtained from a

real system. Two failure processes have been used for this validation : a file system failure process,

and the complete system failure process describing the statistics of the time to crash. The main

conclusions are:

* Predominance of the decreasing hazard function effect due to the integrated

autocorrelation function of the stochastic part of the failure rate.

" Marginal importance of the periodic component of the failure rate with respect to

reliability prediction.

L. _ _ _ _ _ __,__, ,,
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* Exponentially decreasing hazard function since the measured autocorrelation functions
are exponentials.

* Predominance of the periodic component of the failure rate in the PDF of the system
failure time as a function of time of day.

Obviously, if the decreasing rate of the hazard function is accepted to be exponential and the

periodic component is neglected, it is not necessary to estimate the resource utilization functions.

Instead, the values of a, a , a2 , 'pl and A32 can be estimated directly from a history of failures. This is

what was done with the Stationary approximations presented in this Chapter.

The properties of the Cyclostationary and Stationary models are further discussed in the following

Chapter, where these two models are compared (numerically and qualitatively) with the other three

models described in Chapter 2: Exponential, Weibull, and Periodic.
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DISCUSSION

Chapter 6
Discussion

6.1. Reliability modeling

The different models currently used to characterize the reliability of digital computing systems were

summarized in Chapter 2. In this section, the predictions of those models, the predictions of the

Cyclostationary and Stationary models, and the observed behavior of the system described in Chapter

4 are compared. In Section 6.1.1 the predictions of the different models with the observed system

behavior are compared by means of numerical statistical tests. In Section 6.1.2 the assumptions made

by each model are compared, along with some of their most general properties. The main

conclusions of this Chapter are summarized in Section 6.3. The Reliability function and hazard

function of each of the five models (Exponential, Weibull, Periodic, Cyclostationary, and Stationary)

are summarized in Table 6-1.

6.1.1. Numerical comparisons statistical tests

Table 6-2 shows the results of applying a X2 goodness-of-fit test between the actual failure data of

the CMU-10A file system and the distributions predicted by the Exponential, Weibull, Periodic,

Cyclostationary, and Stationary models using appropriate maximum likelihood estimates for each

model. A X2 value smaller that 0.05 (i.e., a level of confidence greater than 0.05) indicates a good fit

between predicted and observed behavior and suggests the acceptance of the hypothetical

distribution as the real distribution characterizing the failure process.

As can be seen from Table 6-2 only the Cyclostationary and Stationary models show a clear good fit

with the experimental data. Neither the Exponential nor the Periodic models seem to be able to

describe the failure process with significant accuracy. The Weibull and simplified Stationary models

(obtained by approximating the autocorrelation function by a single exponential) give levels of

confidence close to 0.05, which suggests that these two models can be used when it is desired to

trade some accuracy for model simplicity.
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Exponential

R e')X= (6.1)

h e( X Xe (6.2)

Weibull

R(.T) =ew aW) (6.3)

a A
h (r) = WW (6.4)

(XAt) 1aw

Periodic

R P(.r) =' e e'FPu( (6.5)

h (r)= [A~ +p au( (6.6)

QIStationary

= ~a~c~c) a~ (1l i T1 G 2? (6.9)

h3(r) = e3  V2[ * 2~ (6.0)

Table* O-1r Reibiiy2nHzr fuctosfte fie6opaedmdes
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The Cyclostationary model, taking into account both the periodic workload component and the

integrated autocorrelation function, gives the best description of the failure process. Figure 6-1

shows the hazard functions of the above five models in the case of file system failures.

Table 6-3 gives the results of applying a X2 test to the five models in the case of system failures

(crashes). Again, only the Cyclostationary and Stationary models give levels of confidence larger than

0.05. The hazard functions of the five models are shown in Figure 6.2.

REMARK: Note that the predominant effect is that of having a decreasing hazard function due to the

integrated autocorrelation function. Indeed, neglecting the periodic component still leads to an

acceptable level of confidence for the Stationary model. On the other hand, neglecting the integrated

autocorrelation function and taking into account only the periodic workload component leads to a

characterization that has to be rejected, as the level of confidence of the Periodic model indicates.

6.1.2. Qualitative comparisons

As it has been shown in the previous section, the methodology presented in this thesis seems to

lead to a more accurate characterization of system reliability than other more traditional models. Its

widespread use, however, is doubtful due to the complexity of the math involved. Although the

relevance of the results presented in this thesis is discussed in Section 5.3. and later on in Chapter 7,

a comparison of the implicit assumptions and general properties of each model may help to decide

when each model is appropriate.

6.1.2.1. Failure rate

Table 6-4 lists the assumptions made by each model concerning the failure rate of digital

computing systems. The main difference between the Cyclostationary and Stationary models and the

three traditional models is that traditional models assume the failure rate to be a deterministic

function of time, while the Cyclostationary and Stationary models assume the failure rate to be a

stochastic process.

.ll
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Model Parameter Degrees of X2 value Xo2 Level of
Values Freedom Confidence

Exponential Ae = 0.67 7 130 14.067 0

Weibull w = 0.91 8 17.717 15.507 0.026
aw = 0.68

Periodic sp = 1.25 12 1007 21.026 0
Cp = 0.28

Cyclostat. sc = 14.00 8 8.69 15.07 0.36
cc = 2.01

Stationary as = 2.13 6 8.642 12.592 0.19
's1 = 1.42

as2 = 4.03
f=0.59
-82 = 0.21

Stationary as = 1.69 8 19.434 15.507 0.013
(Simplified) a s' = 1.38

p,1 =1.38

Table 6-2: Results of a X2 goodnessof-fit test with the Exponential, Weibull,
Periodic, Cyclostationary, and Stationary models for file system failures. Only
the Cyclostationary and Stationary models give levels of confidence greater
than 0.05. The Weibull and simplified Stationary models give smaller levels of
confidence but close to 0.05. The hypothesis that the time to failure can be
characterized with Exponential or Periodic models has to be rejected. The
data used was obtained from five weekdays of system operation during which
877 (transient) failures were detected. The MTTF value is 7 minutes. The file
system is composed of 8 RP06 disk drives totaling 1600 megabytes of on line
storage.

: 4k
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Figure 6- 1: Hazard functions predicted by Exponential, Weibull, Periodic, '
and Cyclostationary models for file system failures.
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Model Parameter Degrees of X2 value X2 Level of
Values Freedom Confidence

Exponential Ae = 0.0097 18 120 28.869 0

Weibull Xw = 0.0137 17 28 27.587 0.045
aw = 0.61

Periodic sp = 0.01172 17 119 27.587 0
cp = 0.0074

Cyclostat. s= 2.23 18 15.89 28.869 0.6
chw = 0.0082

Stationary as =0.082 14 15.89 23.685 0.3
as. = 0.073
a = 0.00413

1 =0.285

=0.0039

Stationary as = 0.074 17 13.61 27.587 0.7
(1 exp.) oral = 0.067

P, =0.22

Table 6-3: Results of a X2 goodness-of-fit test with the Exponential, Weibull,
Periodic, Cyclostationary, and Stationary models for system failures
(crashes). Again, the cyclostationary and Stationary models give the best fit.
The data used was obtained from 6 months of system operation during which
243 crashes due to transients or software were detected (Nov. 1979 to Apr
1980). The MTTS (Mean Time To reStart) value is 9 hours.
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Figure 6-2: Hazard functions predicted by Exponential, Weibull, Periodic,
and Cyclostationary models for system failures.
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Model Failure Rate Hazard Function

Exponential X Constant X Constant

Weibull Xa Decreasing Xa Decreasing
(Xt)" (Xt)"

Periodic m(t) Periodic m(t) Periodic

Cyclostationary m(t) + xt  Cyclost. process k m(t) -q(t) Decr. modulated
by per. function

Stationary m + xt  Stat. process 11(t) Decreasing

Table 6-4: Failure rates and hazard functions assumed by each of the five
models

6.1.2.2. Hazard function

Loosely speaking, the difference between failure rate and hazard function is the difference between

what actually happens and what can be easily observed. The evaluation of the exact failure rate at a

particular time in a computer may be an interesting mathematical exercise (that of statistical inference

of the value of a random variable from some of its after effects, i.e., failures). But conceptually,

reliability characterization is easier in terms of the hazard function.

This distinction between failure rate and hazard function is not usually made in the Exponential,

and Weibull models. Failure rate and hazard function are identified with the same time functions for

those two models. A hazard function can be derived for the periodic model by averaging the value of

the failure rate for all possible system starting times (a simple calculation will show that the hazard

function for the periodic model is proportional to the squared failure rate).

Recall that if h(t) is the hazard function, h(t)At is the probability of observing a failure in the

infinitesimal interval [t,t + At]. Thus, for the exponential model any interval has the same probability of
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containing a failure. For the Weibull model, the probability decreases with time. For the periodic

model this probability is also periodic. Both for the cyclostationary and stationary models this

probability is decreasing. rhe point is that for the cyclostationary and stationary models the hazard

function has been obtained after computing the expectation for all possible realizations of the failure

rate.

Therefore, it is not maintained here that the probability of observing a failure in an infinitesimal

interval actually decreases with time. What is maintained here is that if the behavior of many systems

is observed, or if the behavior of a single system is observed for a sufficiently long time interval, the

measured parameters will look as if the infinitesimal probability would decrease with time. But the

actual infinitesimal probability for a particular system at a particular moment in time is a random

variable, namely, its failure rate at that moment.

6.1.2.3. Reliability Function

Further insight into the implicit implications of using each of the five models can be gained by

comparing their Reliability functions. Recall from Chapter 2 that the Reliability function is the

probability that no failure will be observed before time t. Only three Reliability functions will be

compared : Exponential, Weibull, and Stationary, given in (6.1), (6.3), and (6.9). Figure 6-3 shows the

above three reliability functions for the file system failure data. Only these three models are compared

to provide a clear idea of their main differences and similarities. The Exponential model is the most

widely used in reliability theory. The Stationary model gives a good fit with experimental data while not

being as complex as the Cyclostationary model. And the Weibull model is the closest previous

approximation to the methods presented in this thesis. Note from Figure 6-3 that for values of t

smaller than 14 minutes (about twice the MTTF value) the Stationary and Weibull models essentially

agree in their predictions while the Exponential model predicts reliability values larger than the other

two models. For values of t larger than 14 minutes, the Exponential model predicts reliability values

smaller than the predictions of the Stationary and Weibull models, the larger predictions

corresponding to the Weibull. Figure 6-4 shows the same three reliability functions for the case of

system failures. Again, the Exponential model gives reliability predictions up to 20% larger than the

other two models for small values of t, and too small reliability values for large values of t. In this case

crossover occurs at t = 13 hours, about 1.5 times the MTTF value.

If the Stationary model is accepted as the best descriptor of the file system reliability (which is a

reasonable thing to do after examining the values of the X 2 test shown in Section 6.1 .1) the following

two conclusions are reached:
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Figure 6-3: Reliability functions according to the Exponential, Weibull and
Stationary models for file system transient failures.
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Figure 6-4: Reliability functions predicted by the Exponential, Weibull, and
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" For small values of t, the reliability predictions of the Exponential model are essentially
too optimistic. The actual reliability is lower than predicted by the Exponential model.

" For large values of t, the reliability predictions of the Exponential model too pessimistic.
The system is actually more reliable than predicted by the Exponential model.

" The differences in reliability prediction are specially important for values of t smaller than
the Mean Time To Failure, where the Exponential model differs by almost 20% with the
Weibull and Stationary models.

* Reliability predictions of the Stationary and Weibull models are within 5% through all
range of values of time.

Overall, the results presented here are consistent with the results presented in [McConnel 811. This

is important because the analysis done by [McConnel 81] with the Weibull distribution was extended

to redundant systems (duplex, triplex and TMR) for which the same behavior was observed.

6.2. A possible new design parameter

Assume now that the autocorrelation function of the fraction of time in kernel mode is somehow

under the control of'system designers. Maximum reliability would be obtained if
RXX(=)i : (a'su/ + OsY2) (6.11)

That is, the stochastic component of the system failure rate would be white noise. In this case, the

PDF of the time to failure would become an exponential with parameter

: a - (cry 1 - aSY2) (6.12)

The system would still be able to do the same amount of work in the sense that the average fraction of

time in kernel mode is independent of the shape of its autocorrelation function.

If such an autocorrelation function could be obtained on the CMU-10A, the MTTF value would be

16 hours, compared with the real MTTF value of 9 hours obtained with an exponentially decreasing

hazard function. Figure 6-5 shows the reliability functions obtained from the Stationary approximation

considering both an exponentially decreasing hazard function and a delta function (white noise).

Although pure white noise is impossible to obtain physically (it has an infinite bandwidth), the fact that

faster decreasing rates for the autocorrelation function means also more reliable systems is a new

factor to take into account.

6.l
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Recall from Section 4.1.2.1 that the distinctive property of white noise is that it is unpredictable.

Thus, designing a system with a faster decreasing hazard function means also removing some

predictability from its behavior. Clearly, this indicates a tradeoff between performance and reliability

since many algorithms to enhance system performance (for instance, in schedulling and paging) are

precissely based on predicting future system behavior. However, it is not clear at present how the rate

at which the hazard function decreases (that is, the shape of the failure rate autocorrelation function)

can be controlled.

6.3. Summary

Three different known model used to characterize the reliability of digital computers have been

compared with the two main modeling methods presented in this Thesis (Cyclostationary and

Stationary) and with actual failure data collected on the computing system described in Chaper 5.

Statistical test performed with two different failure processes clearly suggest:

" Acceptance of the Cyclostationary and Stationary modeling methods as suitable tools to
characterize system reliability.

" Rejection of the Exponential and Periodic models as accurate descriptions of computers
failure processes. The only exception may be the use of the Exponential model when
simplicity has absolute priority.

* Acceptance of the Weibuff and simplified Stationary models as marginally accurate
descriptions of system reliability. They are not as good as the Cyclostationary or
stationary models nor as bad as the Exponential or Periodic.

* Introduction of a possible new design parameter: the rate at which the hazard function
decreases to its asymptotic value.

Qualitative comparisons between the Exponential model and the Stationary and Weibull models

have confirmed the findings of [McConnel 81], that is,

* The Exponential model is too optimistic when predicting reliability for small values of t.

* The Exponential model is too pessimistic when predicting reliability for large values of
t. The Weibull model has been found too optimistic when predicting reliability for large t.

Clearly, the validity of a modeling methodology cannot be confirmed or denied by the results of a

single experiment. However, the results obtained so far are encouraging and justify a more detailed

study. Therefore, the next Chapter is dedicated to elaborate some applications derived from the
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Cyclostationary and Stationary modeling methods. In some cases, these applications will be

independent of the results obtained until now. However, they are included because they are natural

extensions to the philosophy used through the Thesis.

IU
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Chapter 7
Applications

The previous Chapters have shown how the Cyclostationary and Stationary modeling methods are

the correct approach to characterize computing systems reliability operating under periodic or

constant workload respectively. Further, it has been shown how the Stationary model may be just

enough to predict reliability even for systems under periodic workload, since the effect of having a

periodic workload in the failure rate is minor compared with the effect of considering the failure rate

to be a Gaussian process, and therefore having a decreasing hazard function.

Nevertheless, as will be shown in Sections 7.1 through 7.3, that workload periodicity can still be

used to obtain some new results related to reliability characterization. The first contribution is

presented in Section 7.1, where it is shown how the contributions of software and hardware errors

can be easily evaluated.

It was stated in Chapter 2 that one of the main problems associated with the acceptance of fault-

tolerance as a more desirable attribute of general purpose computing systems was the fact that

performance evaluation and reliability characterization are unconnected. Thus, in Section 7.2 ani

attempt is made to elaborate an integrated Performance/Reliability model.

In Section 7.3 the problem of determining the optimum checkpointing interval in a transaction

processing system is revisted and refined. The purpose of this section is to determine if the modeling

methods presented in this thesis in any way invalidate or confirm previously obtained results.

Finally, in Section 7.4 a first step is given in a completely new area: modeling the effects of

hardware transients, software faults, and permanent !-ardware faults. The main conclusions of the

Chapter are summarized in Section 7.5.
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7.1. The impact of unreliable software on the observed system
reli a billity

As it was described in Chapter 2, current software reliability modeling and measurement efforts

concentrate in the evaluation of static software attributes. Some of these attributes are the number of

bugs present in a software package, or the mean time between software failures of a set of programs

operating in a controlled environment. Here, however, the evaluation will refer to the observed

behavior of systems operating in the field under dynamically changing conditions. Further, software

reliability models usually refer to parameters of interest to the software development team, while here

an effort will be made to quantify the impact of software unreliability to the average user of a Time

Sharing system and to the user community.

Perhaps the simplest question to be asked is whether a given system failure is due to a hardware

transient or to a software fault. Most operating systems provide some tools to help answering such

question. The most primitive tool is just a memory dump that has to be manually analyzed to resolve

the cause of the failure. Other systems provide more information in an error log. And some systems

even attempt to automatically classify all failures. However, some experience using such tools soon

teaches the difficulty of the problem. Except for a few clear hardware failures (a hard memory parity

error while accessing one of the kernel data structures) most failures usually remain unresolved.

Assume that a system is hung in an infinite loop in the kernel and the system has to be manually

crashed by the operator. How can it be known if a part of code was overwritten by the software itself

or if an undetected transient altered the destination address of a jump instruction?

The method proposed here to resolve such ambiguities is probabilistic. Although each system

failure is due to a particular cause, to learn the exact cause for each failure with a reasonable level of

confidence may be extremely costly. The method proposed here will give only expectations and

averages. But it is substantially cheaper.

It was shown in Section 5.3.3 how the instantaneous system failure rate at each moment in time is

given by

AW = chW(h (~k (7.1)
t +w hW +S3Wt)

which can be viewed as the superposition of the hardware and software failure rates.
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Xtw = (sw m(t) + sw)k (7.2)

Xhw = c swk (7.3)C hw + hwkI

Since kt = m(t) + xt, it is convenient at this point to indicate the dependency on xt more explicitly

XSW(xt) = (swlm(t) + sw)(m(t) + xt) (7.4)

Xhw(xt) = Chw + Shw(m(t) + xt) (7.5)

such that the system failure rate is given by

XSY(xt) = XSW(xt) + Xhw(x) (7.6)

The system failure process can therefore be viewed as a marked doubly stochastic Poisson process,

each failure being associated with a mark specifying if it is hardware or software related. Given that a

failure has occurred at time t, the probability that this failure is due to software is

Psw(ti) = E If If tSW(xtf) 1 (7.7)XtSW(xt) +XtfhW(xtf)

where the expectation is taken with respect the statistics of x and

Phw(tf) = 1 -p w(tf) (7.8)

Hence,

P (to) 00 (SSw m(tf) + Ssw )[m(tf) + u] .u2/2a 2ms~tt= - )_ • [~f)+u du (7.9)SW (210/20. x k kmin-mtf Chw + [a hw + SwlIm(tf) +  Sw2]I[m(tf ) + u]

where the restriction of having a strictly positive failure rate has been taken care of in the lower limit of

the integral.

Figure 7-1 shows the probability that a crash is due to a software error as a function of the time of

day for the CMU-1OA after computing the maximum likelihood values of the coefficients according to

Section 5.3.4. Since the linear term in the failure rate sy cannot be separated in its software and

hardware components (sw1 and Shw) Figure 7-1 shows the upper and lower bounds obtained by

assumings = s, and s = 0. On the average, it seems that software accounts for 60% of the
SW1 S w

crashes while the remaining 40% is due to hardware. This is a misleading interpretation because the
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Figure 7-1: Probability that a crash is due to software or hardware as a
function of the time of day

system does not crash at any time with equal probability. Consider a set of failures observed at times

tf ..... * The expected number of failures due to software is
!1 N

E[nsWIN;tf ....tfN= EN=I Pw(tf ) (7.10)

This expectation has been computed for the set of 243 crashes observed in six months of operation

of the CMU-IOA. Since the system crashes more often at the times that the contribution of unreliable

software is larger, 67% of the crashes are due to software. But it is still possible to refine this number.

The impact of each crash depends on the number of jobs being executed at the time of crash. Figure

7.2 shows the average number of jobs executing in the CMU-1OA as a function of time of day. Given

that a crash occurs at time tf, the expected number of jobs crashed due to software, E[J'w], is

E[Jswltf] = psw(tl) E[Jtf] (7.11)

where E[Jt] is the expected number of jobs executing at time t. Given a set of N failures at times

tl ,...t , the expected number of jobs aborted due to software is

E[JswlN;t ....t = Pw(t ) E[J ]  (7.12
I N 1 I f (712

The value obtained for the CMU.1OA is that 70% of the jobs aborted in system crashes do so because

of software errors. A percentage substantially higher than the 60% originally computed for the

probability that a single crash is due to software. These results are summarized in Table 7.1.

iU
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Figure 7-2: Average number of jobs executing as a function of time of day

Range of variability of the probability
that a crash is due to software depending on 45%-75%
the time of day at which the crash occurs

Probability that a crash is due to software
averaged over one day period 60%

Expected percentage of crashes due to
software during 6 months of operation 67%
of the CMU-10A

Expected percentage of jobs aborted due to
software during 6 months of operation 70%
of the CMU- 1OA

Table 7-1: Different views of the impact of software in system unreliability

t J
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7.2. Performance/Reliability evaluation

7.2.1. The user's viewpoint

From a user's viewpoint, working with an unreliable system has an added cost that would not be

present in a failure free system. This added cost due to unreliability is mainly due to two factors:

" A possible delay in finishing the user's task. The system may fail, remain unavailable for a
while, and parts of the programs being executed may have to be repeated afterwards.
The expected time required to complete a task is therefore longer in an unreliable system
than in a failure free system

" The cost associated with repeated computations. That is, the cost associated with the
use of resources that effectively may be useless, since the system may fail and some
computations may have to be repeated.

These costs will be quantified for a CMU-1OA user in this section. The approach is essentially the

same that as in [Castillo 80a]. The problem of evaluating the added cost due to unreliability is

visualized in Figure 7-3.

End of

Start Restart Restart Restart execution

to tt 2 t 1Time
t i Trec 2 3Treal Tim

T

Figure 7-3: Typical system of events illustrating the unreliable behavior of a
computing system from a user viewpoint

A program is started at time to and failures occur at times t 1, t2 .... such that after each failure the
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program has to be restarted. Complete execution terminates after the system has been operating

continuously for a time Treal'

The total elapsed time since the user starts the program until the the program correctly completes

execution, T, is equal to Treal plus Trec , time during which the program was executing but wasted

because the system failed before the program finished execution.

Treal is a random variable whose statistics depend on the resources needed by the program to

ccmplete execution (CPU time, storage requirements, etc.) and on the system workload during

program execution (i.e., at which rate are these resources provided by the operating system

depending on competing requests by other users). Trec is another random variable whose statistics

depend on Treal and and on the statistics of the time to failure. The total expected cost (in terms of

time) incurred in executing the program is

E[CT] = E[Tre] + E[Trea (7.13)

where the first term in (7.13) is obviously the added cost due to unreliability in the sense that it would

be zero if the program were executed in a failure free system. The failure process will be assumed to

be stationary and the average workload will be assumed to be constant. The expected cost is then

given by

E[CT] = j P.rea(x) E[TrecITreal = x] dx + E[Treal] (7.14)

Given Treal' the expected value of Trec is

E(TrecITreal = x] = " P(Nf = nitrea ' x) E[TrecITreal ' x;Nf =n] (7.15)

P(nf = nITreal = x) is the probability that the program is restarted n times given that it requires x units of

time of continuous system operation and is given by given by

P(nf = niT reI = X) [P (r<x]np(.>x) (7.16)

if tr is the time from restart to failure,

E[Trec Treal = x;N, = n] = n E[trITreal t x] (7.17)

Substituting now (7.17) and (7.16) in (7.15)

E[T reclTreal = x] = E[NfITreal = x] E[trlTreal = x] (7.18)

That is, the expected value of Trec is equal to the expected number of failures multiplied by the

expected time from restart to failure given that Treal = x. The expected number of failures is
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E[NfiT.a, x] = E '= o n [P,('r<x)] n Pt(,r>x) (7.19)

Pf(r<x)
= -- (7.20)

P1(r">x)

The distribution of the time from restart to failure given that a failure occurs before x units of time is

equal to the distribution of the time to failure truncated at time r = x, that is,

Pt(tITrew =X) p (t) [U(t) -U(t-x)l (7.21)Pf(r<x) t,

where p "(t) is the pclf of the time to failure and U(t) is the step function

, (t) 0 W~~ (7.22)

Therefore,

E[triTreal = p, ITreal(tlTreal x) dx (7.23)

pfT<x) E E[tf] -E[t'f(x)] j (7.24)

where
00

E[t'f(x)] = f t p (t) dt (7.25)

Substituting now (7.24) and (7.20) in (7.18) the following result is obtained

E[T E = Eatf i dx. P (x) Et'(x)] (7.26)

[ Pf( <x]) o Pf(<x)

Figure 7-4 shows the expected elapsed time required to execute a program at three different times

of day for different values of Tmtn.For each curve, the straight line represents the second term in

equation (7.13), that is, it is the expected elapsed time due to workload only. The solid line represents

the total expected elapsed time. At 12:00, the contribution of unreliability to the expected elapsed time

of a program requiring 30 minutes of CPU is of 30%. The curves were obtained by actually measuring

the distribution of the elapsed time required to execute a CPU bound program at the three times of

day in the absence of errors. The mean time to failure at each time of day was measured by counting

the number of crashes occurred in two hour time slots centered at each of the three times

considered.

L. _ _II_ _,_,__ _ _ _ _ _,.,_, .__ _ _
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Figure 7-4: Expected elapsed time required to execute a program at three
different times of day
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7.2.2. The manager's viewpoint

In the previous section it has been shown how the added cost due to unreliability can be evaluated

for a user trying to complete a task given the resources needed by his task and the system workload

patterns. Here, a measure will be developed of potential use to system administrators. The idea is to

evaluate the cost due to unreliability of a computer system operating as a server of computing utility.

Let Jt be the number of active jobs at time t. For fixed t, Jt will be, in general, an integer valued

random variable. Jt is therefore an integer valued stochastic processes. Assume that a system failure

occurs at time tf The added cost due to that failure can be evaluated as,
t1

C(tf) = Jt lCd + Z41 Cr. (7.27)

where J4 Cd is the cost associated with the time that the system is down (which will be assumed to be

fixed for failures due to transients and software) and Cr. is the cost associated with the recovery of the

i-th job. Assume now that the system has been operating for Nd days, during which Nf failures have

occurred at times tl ... t The expected added cost due to unreliability during these Nd days is

C(N dINI;ti,INf t) = E{ Ek- J 1kCd E[ k= + i=1r (7.28)

If the recovery cost for any job is independent of the number of jobs active at the time of failure, and

the Cr are assumed to be identically distributed random variables,

C(NdINI;tfl .... tN) = ENf=, E{Jt) Cd+ F , E {Jt } E (Cr .  (7.29)
4k d k I k Ik

According to the results presented in Chapter 3, given that N failures have occurred, each of the tf

has a distribution over a one day period equal to the periodic component of the failure rate, f(m(t), ).

Thus
T

C(NdIN?) = N [Cd + E {Cr ] /T f(m(t),- ) E (Jt} dt (7.30)

where it has been assumed that a stationary distribution exists for the Cri. Finally, since neither Cr,,

m(t), or Jt depend on Nf,
T

C(Nd) = E{N1) [Cd + EOCri fO f(m(t), ) E{JJ dt (7.31)

For a system administrator, the interesting question is whether the policies regulating the use of the

system can be modified such that the above cost is minimum, while simultaneously executing, on the

average, the same number of jobs per unit time.
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E(Nf) is the expected number of failures in Nd days and can be reduced only by improving tihe

hardware or the operating system. Cd is the cost associated with the system down time after a failure,

which presumably will already be as small as possible. E{Cr.} is the cost associated with the abortion

of user jobs, and depends on users patterns of use, programming style, and so on. The only term left

for the administrator to play with is the variable cost associated with the system workload variations.

Let CU be equal to the added cost depending on workload variations
T

C = f f(m(t),K-) E(Jt dt (7.32)

Since f(m(t),Z) is a polynomial on m(t), Cu will be minimum when m(t)= i, the mean value of m(t).

Thus, allowing the workload to vary around its mean value has an associated cost in itself. For the

CMU- 1OA the periodic variations actually increase the cost due to unreliability by 8% in the sense that

Cu = 0.13 and for constant workload Cmin = 0.12. Obviously, the number of jobs processed in one day
U

is the same in both cases.

Dividing (7.31) by Nd, the added cost due to unreliability per unit time is obtained

C = 1 E Cd + E{Cr ] Cu  (7.33)MTTF I

This expression is important as it includes all factors for which unreliability has an associated added

cost. From (7.33) is seen that doubling the MTTF value actually decreases the added cost in half. It

has already been shown how Cu increases this cost as a consequence of workload periodicity.

Finally, Cd is usually going to be small compared with E{Cr. , the recovery cost associated with each

job. Thus, one way to reduce the added cost due to unreliability is to reduce the expected recovery

cost from failures. The next section shows how the recovery costs can be reduced by introducing

checkpointing.

7.3. On the optimum checkpointing interval

To diminish the added cost due to unreliability several alternatives are possible according to

expression (7.31). Assuming that hardware and operating system reliability are given and that the

workload patterns cannot be changed there is still a way by which the cost associated with delays and

repeated computations can be reduced. Assume that at certain points in time called checkpoints a

copy of the program memory image and data structures is made and stored in some secondary

storage medium. Figure 7.5 shows a typical sequence of events when checkpointing is possible. If a

failure occurs before the program completes execution, the copy of the program image at the most

L -II II I Il = 1 . .. :. . . . .. .
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Crash Recovery

Checkpoint Checkpoint Checkpoint Time

Figure 7-5: Typical sequence of events in a system with checkpointing
facilities. The total added cost due to unreliability is the cost associated with
the checkpoint operation, plus the cost due to system unavailability due to
failures, plus the cost of recovering after each failure to the state given by the
last checkpoint.

recent checkpoint is restarted. Thus, only the computations performed since the last checkpoint have

to be repeated. Since the checkpoint operation has also an associated cost, the problem is to

estimate the time between checkpoints such that the overall added cost (cost due to checkpoints and

cost due to failures) is minimized.

Checkpointing is rarely used in Time Sharing systems except in programs where loss of data due to

a failure is specially inconvenient (such as editors or electronic mail programs). However, it is

extensively used in Real Time systems and in transaction processing systems, where at each

checkpoint a copy of the database is made, and recovering from a failure means to bring the

database to the last consistent state and reprocess the transactions arrived since the last checkpoint.

Because of its importance, the problem of determining the optimum checkpointing interval has

received considerable attention. Table 7.2 is a summary of the most relevant models proposed for the

evaluation of the optimum checkpointing interval. For each model a reference is given, the main

assumptions in the model, and the decision criteria used to determine the optimum checkpointing

interval. Most of these models have been surveyed in (Chandy 75b].

The purpose of this section is to investigate if the modeling methodology presented in this thesis

confirms or invalidates the results given by the models presented in Table 7-2 and to study if a refining

of these results is possible.
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Reference Assumptions Goal

[Young 74] Constant workload Maximize
- Constant failure rate Availability
. No errors during check.

[Chandy 75a] Constant workload Maximize
- Constant failure rate Availability
- Errors occur during check.

[Chandy 75b] Periodic Workload Maximize number
- Periodic failure rate of transaction processed

[Gelenbe 781 Constant workload Minimize
- Constant failure rate response time
- Errors occur during check.

Table 7-2: Four proposed models to evaluate the optimum checkpointing
interval in a transaction processing system

7.3.1. Constant workload

If the workload is constant the failure process becomes a renewal process. The times between

successive failures form a sequence of independent identically distributed random variables.

Following the same approach as in Section 7.2, the added cost due to unreliability per unit time will be

evaluated. If the checkpointing interval is assumed to be Tck, the added cost is given by

E[CTck] = T 1 E Cd + E[CITck] J (7.34)
ck

E[CRITck] is the 3xpected cost dut to recoveries from possible failures given that the checkpoint

interval is Tck. Repeating the same reasoning as in Section 7.2,

E[CRITckI = Pc(Nf = n) E[CRIT kNf = nj (7.35)
Tck =1 P (7(.36)'

=E[NfITck] EC"O + k c- (7.36)
2

where it has been assumed that the recovery cost after each failure is equal to a fixed cost CRO plus a

variable cost proportional to the time since the last checkpoint. The expected variable cost is kTck /2.

Also, for a renewal process, the expected number of failure during the time Tck is Tck divided by the

Mean Time To Failure (MTTF). Hence,
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E[CR IT' I T c CO + k Tc (7.37)ECIck Ti MT TF .2

and

ETCTckI = +-k (CCdo + kT-F-) (7.38)
Tck

The expected cost will be minimum when its derivative with respect to Tck is zero. The optimum

checkpointing interval is therefore given by

T ( 2 Cd MTTF ) 1/2 (7.39)

which is exactly the result obtained by (Young 741.

Indeed, since the failure process is a renewal process, the expected cost depends on the expected

number of renewals (failures) per unit time, but it is independent of the PDF of the time to failure.

Therefore any result obtained under the assumptions of this thesis will agree with previously obtained

results if the average workload is assumed to be constant.

7.3.2. Periodic workload

If the average system workload is given by w(t) and the average tailure rate is X(t) [Chandy 75a] has

given a recursive algorithm to determine the optimum sequence of checkpoint times to minimize the

added cost due to unreliability. The solution given by [Chandy 75a] is based on discretizing m(t) and

X(t) in intervals during which they can be assumed to be constant. Graph theory can then be used to

determine the optimum collection of checkpoint times.

The problem was originally stated by [Chandy 75a] as follows. If the last checkpoint was performed

at time Tck, the cost due to a possible failure at time t is

Ct ITC= CRO + k w(s) ds (7.40)
ti =t fck

If the time required to perform a checkpoint is Cd, the total expected cost in [Tck,tI is
Tc k + cd T Tc']

E[CITck 't ] = w(t) dt + Ct ck X( .r) d7 (7.41)

Tck 
cd d

Although according to the results presented in Chapter 4 Xt = m(t) + xt , the expected cost is equal to

(7.41) since E[Xt] = m(t). The optimum checkpointing interval is the interval which minimizes the

above cost. By discretizing m(t) [Chandy 75a] gives a recursive algorithm to compute the instants at

which checkpoints must be done. The way in which the problem is stated is precisely the main
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obstacle to obtain a concise solution. Instead, assume that the system is started at time ts due to a

failure or that a checkpoint finalized at time ts . Then
/. Tck T ,k +C d

E[C[tsTck]) = k'] Cs" X(') di + w(t) dt (7.42)

Differentiating with respect to Tck, the following equation is obtained.

kC + kk X(TcIt w(s) ds = w(Tck) - w(Tck-Cd) (7.43)
S

The difference between the value of Tck satisfying (7.43) and the solution proposed by [Chandy 75a]

is that the value of Tck satisfying (7.43) can be computed by the system "on the fly". The first term on

the left hand of (7.43) is the fixed cost due to recovery from a crash. The second term is the variable

cost and increases as Tck-t s increases. The right hand side is the cost associated with the

checkpointing operation. Thus, the above equation indicates that checkpointing must be performed

when the expected recovery cost exceeds the cost associated with checkpointing. Let the system be

sampling the values of w(t) and X(t) at regular intervals At. Then,

f W(s) ds = E =1 w(tn) At (7.44)

where the first sample is taken immediately after a checkpoint has been performed or a crash has

occurred. The system has only to keep track of the variables

CR(tn) = CR (tn1) + k k' X(tn) W(tn) At (7.45)

Cck(tn) = W(tn) - W(tn-Cd) (7.46)

where

CR = k' CRO (7.47)

A checkpoint must be performed whenever CR(tn)>Cck(tn). In this way, the optimum checkpointing

interval adapts itself to system behavior, by resetting the time scale every time that a checkpoint or a

crash occurs.

I.
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7.4. Reliability modeling including transient hardware faults,
software faults, and permanent hardware faults

As a final elaboration of the present modeling methods, a model will be presented which includes

the effect of permanent hardware faults, in addition to hardware transients and software faults. The

modeled system is a nonredundant system under constant average workload. Recall from Chapters 5

and 6 that the Stationary model still gives a much better characterization than the any other model,

even for systems under periodic workload. The assumptions regarding the statistics of the time to

permanent fault will be the traditional ones, i.e., the time to permanent failure will be assumed to be

exponentially distributed

P P(tP <) = 1 P (7.48)

where Pp(t P5r) is the probability that a permanent fault will occur before time r. The PDF of the time

to failure due to transients and software will be assumed to be any of the distributions given in

Chapter 4 under the constant workload assumption

Pp(tt ') 1 e h(s)d3 (7.49)

where h(t) is any of the hazard functions given in Section 4.1.

7.4.1. Markov processes

Reliability modeling for permanent faults is often characterized by means of Markov processes.

Central to the theory of Markov processes are the concepts of state and state transition. The state of a

system represents all that it is needed to know to describe the system at any instant. In the course of

time the system passes from state to state and therefore exhibits a dynamic behavior. If the system

can be characterized by its continuous time evolution thorough a discrete state space, at any instant

the system is in one of N states, and transitions between states occur at random times. The

distinguishing property of Markov processes is that they must satisfy the following property

P(Stn = SlstI =S1 ..... Stn.1 = Sn = P(Stn Stn-1 = Sn-1) (7.50)

where stn denotes the state occupied at time tn.The above equality has the following implications:

* The probability of occupying any state in the future depends only on the state presently
occupied.

" The pdf of the time to the next transition does not depend on how long the present state
has been occupied nor on the destination state
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For continuous time Markov procasses, the above property in fact implie3 that the time to transition

must be exponentially distributed (Howard 71]. A stationary Markov process is then completely

specified by its transition probability matrix

P = {p..;i,j=1,....N} (7.51)

where

pii = P{next state is jipresent state is i} (7.52)

An equivalent characterization of a Markov process is in terms of the transition rates matrix A

A = {Xii;i,j = 1 .... N} (7.53)

where

gii(t) = Xiie i  (7.54)

is the pdf of the time to transition to state k given that the process enters state i at time 0.

State: 1:0 Operational

2:F Failed

Figure 7-6: Characterization of the reliability of a nonredundant system
subject to permanent hardware faults by a Markov process. X p is the rate at
which permanent failures occur and Xr is the rate at which repairs take place.

Figure 7.6 summarizes the characterization of a nonredundant system subject to permanent

hardware faults only. Since the system can be only operational or failed, the failure process is

characterized as a 2 state Markov process. The times to failure and to repair are exponentially

distributed. The MTTF and MTTR values are 1 and 1 /'r respectively.

L 
I i
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7.4.2. Semi-Markov processes

Markov processes are not appropriate to characterize the reliability of systems subject to

permanent, transient, and software failures. The PDF of the time to failure due to transients or

software has been shown to have a decreasing hazard function, and according to the statistical tests

performed in Chaper 6, it is not properly described by an exponential distribution. Hence, for a system

subject to the three types of failures the PDF of the time to transition depends on the destination state.

This PDF will be exponential if the destination state is failed due to a permanent failure, or it will be of

the form given in (7.49) if the destination state is failed due to a transient or software error.

This dependency of the pdf of the time to transition on the destination state is precisely the

distinguishing property of the so called Semi-Markov processes. A system characterized by a Semi-

Markov process is always in one of N states. Successive state occupancies are governed by the

transition probabilities of a Markov process. At transition instants, the system behaves as a Markov

process, and the process determining such transitions process is called the embedded Markov

process. The imbedded Markov process is completely described by a NxN matrix of transition

probabilities P as defined in (7.51). In addition, in a Semi-Markov process, whenever the system

enters state i it is imagined that it determines the next state j according to state i's transition

probabilities {Pil .... iN). After j has been chosen, the system "holds" for a random time Ti. in state

i. The pdf of rii is given by qii(t), obtaining therefore a vector of pdf's for each state i. Hence, a Semi.

Markov process is completely determined only if both the matrix P and the pdf's matrix Q(t)

0(t) = {qi.(t);i,j = 1,...,N) (7.55)

are available.

Figure 7-7 synthizes how a non redundant computing system can be characterized by a Semi.

Markov process incorporating the effects of permanent hardware failures, transient hardware failures,

and software failures. The system is operational when in state 1. The system selects then the next

state according to the transition probabilities P12 , P13. If the destination state is state 2 (Failed due to

transients or software), the system selects

q12(t) = h(t) el h(s)ds (7.56)

as the pdf of the time to transition. If the next state is 3 (failed due to a permanent hardware failure) an

exponential distribution with parameter Xp is selected as the PDF of the time to transition
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2 t )
2

State: 1:0 Operational

2:F t  Failed due to transients or software

3:Fp Failed due to permanent failures

Figure 7-7: Characterization of a non redundant system subject to
permanent and transient hardware failures, and software failures

'X t
q 13(t) = X pe (7.57)

The other transitions are similarly characterized. If the system is in state 2 (failed due to transients or

hardware) it will become operational after a fixed recovery time tr and therefore the pdf of the time to

restart is q21 (t) = 8(tr). A permanent hardware failure may also occur while the system is recovering

from a transient. The Ddf of the time to such event is an exponential distribution truncated at t = tr.If

the system is in state 3 (failed due to a permanent hardware failure) it will always recover after a

random time exponentially distributed with parameter Xr and

-X rt
q31(t) = \re (7.58)

Note that Ar is not the rate at which permanent failures occur, but the rate at which permanent

failures are observed since the last system restart. (

k
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7.4.2.1. Limiting behavior

Define now the following matrix of time varying functions

't(t) = {(p,.(t);i,j = 1 ,...,N) (7.59)

where rpi(t) is the probability that the system will occupy state j at time t given that it entered state i at

time 0. Then it can be proven that

No t

ept ~fqi(-r) d-r + 7Lk= 1 Pik ql,(-r) qpi(t,r) d7 (7.60)

Equation (7.60) requires the solution of a system of integral equations whenever numerical values of

0(t) are required. Although this system of equations can sometimes be solved by using Laplace

transform methods (see [Howard 71]) it is cumbersome. However, if the desired knowledge is only on

the average, a simpler result can be used. Let

Tpii = lim 1p(t) (7.61)

Then 9) is the average fraction of time spent in time j given that the system entered state i at time 0.

For example, the value of rp,1 for the system described in Figure 7-7 is the system availability, since it

is equal to the fraction of time that the system is operational given that the system was first started at

time 0. A basic result of Semi-Markov theory is

it .E[rj]
'pEr](7.62)

Vi.E[ij i
= _E[T] 

(7.63)

where V= (v1 V.... N) is the limiting state probability vector of the embedded Markov process. Such a

vector can be obtained by solving the system of equations

P (7.64)

subject to the condition

*= 1 (7.65)

Equation (7.63) is important in that it implies that the only statistic of the holding times that affects the

limiting behavior of states occupancies is the expected value.
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As a simple example consider the C11U- 10A. Repair takes place with a frequency smaller than once

a month. Since the system crashes on the average every 9 hours,

P12 = 0.999 (7.66)

P13 = 0.001 (7.67)

Also, it will be assumed that

P21 = 1 (7.68)

P23 = 0 (7.69)

P31 = 1 (7.70)

P32 = 0 (7.71)

The following values are then obtained for -W

=0.5 (7.72)

= 0.4995 (7.73)

W 3 = 0.0005 (7.74)

Assuming

E[T=] = 9 hours (Mean Time To Failure) (7.75)

E(T2] = 15 minutes (Mean time to recover from transients) (7.76)

E[7 3] = 2 hours (Mean Time To Repair) (7.77)

then

Availability = - 0.97 (7.78)

7.4.2.2. Reliability prediction

Let the pdf of the time to failure, pt(t) be the unconditional pdf of the time to transition from state 1,

independently of the destination state. Thus,

Pt(t) = P12 q12(t) + P13 q13(t) (7.79)

and the reliability function becomes

L .,.. ..__ _
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R(t) P(t 1 t) (7.80)

00

f pt(s) ds (7.81)

= p 12 R12 (t) + P13 R13(t) (7.82)

where R 12 (t) is the reliability function due to transients and software

e/ h(s) ds
R= e (7.83)

and R13 is the reliability function due to permanent failures

ept

R 13 (t) = (7.84)

Since p12 >>>p 13 , the system reliability is essentially the reliability function discussed in Chapter 6 for

transients and software according to the Stationary model.

7.5. Summary

The modeling methodology introduced in Chapters 3 and 4 has been extended in this chapter to

derive some important applications to Reliability modeling and cost/benefit analysis of -fault.

tolerance. In particular, the following extensions have been considered:

e Decomposition of the failure process in its software and hardware components. Although
on the average the probability that a crash is due to software may be of 0.6, the impact of
unreliable software may be much more important due to the fact that the system crashes
more often in periods of high load when the contribution of uncorrect software is larger
than average.

* Evaluation of the added cost due to unreliability both from a user's viewpoint and from a

system manager's viewpoint. Curiously, the fact of having a periodic workload (as
opposed to constant) has an associated cost in itself.

* Study of previous results to evaluate the optimum checkpointing interval. A new result

has been presented in the case of periodic workload.

* Introduction to models incorporating the effects of software errors, transient hardware
faults, and permanent hardware faults.

4k
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C h a p t.Nr 8
Conclusions and suggestions for further research

Through the thesis, the two main questions for which a simultaneous answer has been sought are

Question 1: What is it desirable to know about computing systems reliability'.

Question 2: What variables can be easily measured from real systems?

If a simultaneous answer for both questions exists, it must obviously a compromise, since the answer

to the first question is "everythin'g'. And this will never be known. Prehaps the closest answer to the

above two questions are the results presented in Chapter 7, were methods to evaluate the impact of

unreliability, anid methods to trace the impact of each cause of unreliability (permanent hardware

failures, transient hardware failures, and software failures) have been presented.

It was in Chapter 2 that it was claimed that an apparent conflict would be solved. The fact that a

system fails more during prime time is widely accepted. And no statistical tests can contradict the fact

that the Weiubull distribution characterizes is a better distribution to characterize the time to failure

than an Exponential or Periodic model, even though the Weibull model does not include periodicity

concepts. The answer to this apparent conflict seems to be to consider the failure rate to be a

Gaussian process with periodic statistics, i.e., a cyclostationary process. The after effects of this

approach have been

* Derivation of the general properties of the class of Doubly Stochastic Poisson process
whose failure rate is a Gaussian process (Chapter 3).

* Characterization of doubly stochastic Poisson process whose intensity is either a
stationary or a cyclostationary Gaussian process. In particular a complete family of
distributions commonly used in statistical analysis of failure date have been shown to be
special cases of this approach (Chapter 4). As a side effect, the general properties of the
unreliable behavior of computing systems operating under periodic or constant workload
have been established.

* Elaboration of the necessary techniques for model parameterization and validation
(Chapter 5).
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* Validation of the model by comparison with the actual behavior of a real system, and
comparison of its predictions -with the predictions of other models (Chapter 6). In
particular, stablishment of ranges for which other models may lead to over optimistic or
over pessimistic expectations.

*Establishment of cost and benefit measures of fault-tolerance derived from the modeling
methodology (Chapter 7).

Since the main results presented in Chapters 3,4, and 7 are original, a cautious approach must be

taken in deriving conclusions from these results until further proofs of their validity are available. With

caution and the two above questions in mind, the following sections summarize the preliminary

conclusions derived from this thesis and pose some interesting unanswered questions. Traditionally,

these new questions will require some more research to be answered, or they will be forgotten.

8.1. Reliability modeling

Through the thesis a reliability modeling methodology has been developed starting from basic

principles of operation of Time Sharing systems. Nevertheless, it should be noted that the original

MULTICS design dates from the early 1960's. Model validation has been done with the TOPS-10

operating system, already more than 10 years old. Why then bother to study such systems? Would not

it be better to study state of the art Time Sharing systems, multiprocessors, multicopmuters, or

collections of personal computers operating in Local Area Networks ?

The fact is that current systems still adopt the basic conventions of the original MULTICS design.

For example, the IBM 4341 processor executing the operating system VM/370 does not attempt to

recover from transient hardware failures if these failures occur while the system executes in kernel

mode (Ciacelly 811]. The system attempts to recover when transient failures occur in other modes,

which is one of the central hypothesis of work of the present thesis.' As for the extension of similar

modeling methods to other systems such as multiprocessors or multicomputers, note that the

methods followed in this thesis are oriented to the steady state system characterization relying heavily

on operating system measuring system facilities such as error logs, system tables with accounting
information, and so on. These measuring tools are available in operating systems for purposes of

accounting, maintenance aids, or system tunning facilities. But these measuring facilities have been

used here for reliability characterization purposes.

Few multiprocessors are available today for general use and experimentation. Of the
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multiprocessors available, most are experimental systems (such as C.minp [Wulf 811 and Cm *[Jones

801) are far from being general purpose systems or are dedicated to the execution of relatively simple

real time functions (such as Pluribus [Ornstein 74] whose only function is that of packet switching, or

other multiprocessors dedicated to telephone switching functions). Obviously, in most experimental

systems the concept of steady state operation is not defined, and being vehicles of experimentation,

the software is usually changing continuously. Further, no system available for experimentation has

the necessary measuring tools required to validate theoretical models. The emphasis given in

Tandem systems [Katzmanu 771 to instrumentation problems is significant [Blake 80], since Tandem

systems are at present the only multiprocessors offering high reliability in general purpose

applications. Further, before attacking the problem of characterizing the unreliable behavior of

multiprocessors due to hardware transients and software, it seems reasonable to solve first the

problem for simpler, more accessible systems such as Time Sharing computers.

Nevertheless, it is expected that several of the new results presented in this thesis will be applicable

to other systems. In Local Area Networks, expensive facilities such as centralized file systems or

expensive peripherals are likely to operate in Time Sharing mode, their reliability characterization

being characterized by the same principles exposed in this thesis.

The model presented in Section 7.4 incorporating permanent hardware failures, transient failures,

and software failures can be viewed as a first step in the characterization of the unreliable behavior of

multiprocessor systems. The extension of this model to multiprocessors is desirable but not at all an

easy task. First, note that model parameterization is possible only after detailed knowledge about the

relationships between resource usage and unreliable manifestations. Remember how the PDF of the

time to failure due to hardware transients and software has been derived. Secondly, the '- roduction

of redundancy in hardware, software, or both may lead to unexpected results since the failure

processes due to software and transients are not independent, but both depend on workload time

varying patterns. Thus, care is necessary when elaborating the model to systems with some degree of

redundancy.

A problem that has been systematically ignored through the thesis is the distinction between

transients and intermittent faults. While transient failures are manifestation of changing

environmental conditions (such as cosmic rays) or consequences of limitations in manufacturing

processes (such as the presence of radioactive materials in packaging materials), intermittent faults

are manifestations of physical degenerative processes (for instance, oxidation in a terminal contact).

Still, much of the results presented in this thesis should be valid, since an intermittent fault can only



136 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTIO14 MODEL

be detected when exercising the component affected by the degenerative process. However, the

distinction between transients and intermittents is useful for diagnosis and replacement policies.

Current efforts in this direction have been reported by [Bossen 811.

Finally, a sensitivity analysis should be performed establishing levels of confidence of the reliability

predictions of the Stationary and Cyclostationary models depending on the parameter estimation

procedures and sample size.

In summary, the main topics in which further research is to be expected are:

* Incorporation in state of the art systems of exhaustive measuring capabilities to allow
system characterization and model validation with relatively minor effort.

* Extension of the present modeling methods (i.e., hardware/software prediction models)
to systems having some degree of redundancy at the subsystem level such as
multiprocessors.

" Better understanding in the differences in the manifestations of transients and
intermittent faults.

" Sensitivity analysis of reliability predictions.

8.2. Performance/Reliability modeling

The above considerations are specially relevant to Performance/Reliability modeling techniques of

systems having some degree of redundancy such as multiprocessors. While in a (uniprocessor) Time

Sharing system singularities are easily identified (i.e., the hardware and the kernel of the operating

system) for a multiprocessor singularities may form a dynamically changing collection of resources.

Some Performance/Reliability models were referenced in Chapter 2. Most of those models assume

that upon failure detection the system may reconfigure itself and continue operating in a degraded

performance state until repair takes place. These models attempt then to characterize how system

performance is likely to evolve in time depending on the presence cf different types of failures. The

main assumption common to all these existing models is that they all use Markov models as the

underlying abstraction. That means that all the times between state transitions are exponentially

distributed. However, it has been shown in this thesis that the distribution of the time to failure due to

transients and software cannot be approximated by an exponential distribution. Therefore,

Performance/Reliability models will have to evolve into Semi-Markov models where the distributions

of failures due to software and transients are of the type derived in Chapter 4.
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If all it is needed to know about the system is its steady state behavior, the distinction btween

Markov and Semi-Markov modeling is not important. As it has bean shown in Section 7.4 steady state

characterization for a Semi-Markov model depends only on the expected times between transitions.

However, it some more detailed knowledge is required, Semi-Markov modeling is unavoidable. Recall

from Section 6.1.2 that the differences in reliability predictions between the exponential distribution

and the distribution predicted by the Stationary approximation are not neglectable for values of time

smaller than the MTTF value. Therefore, the distiction between Markov and Semi-Markov modeling is

especially relevant for systems having exceptional reliability requirements during periods of time

smaller than the expected MTTF value. This is the case, for example, of SIFT [Wensley 78] and FTMP

[Hopkins 781.

8.3. Software reliability evaluation and the design of reliable
software

The central argument of this thesis with respect to software reliability is that the observed software

reliability depends on the instantaneous complexity of the data to be processed. Certainly, when a

software package is implemented it is expected to cope equally well in all situations for which it has

been designed to work. However, given that the software is subject to imperfections, it is more likely

the such imperfections will be noticed while processing data describing situations of high complexity

than processing data describing simple situations. This is so because simpler situations are easier to

understand, the software for them is easier to design, and easier to debug.

This discussion is in rather loose terms because the lack of a suitable descriptor for the meaning of

"complexity". But note that here complexity is an attribute of the world as seen by the software, not

an attribute of the software itself. However, the world seen by the software is just the state of its data

structures. If the only descriptors that can be obtained about the complexity of a situation to be

processed by the software is by means of the state of its data structures, such descriptors will be very

much representation dependent. By dependency on representation it is meant that different situations

with the same inherent complexity may lead to different software reliability characterizations

depending on the representation adopted in the data structures to represent such complexity.

Consider, for instance, the problem of deadlocks. Several processes request the allocation of several

resources. If some processes are processing for each other's resources but all are waiting and none

is able to release a resource, deadlock occurs. However note that the number of processes. requests,

and resources (which together determine the complexity of the situation to be processed) deadlock
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will occur only under certain ordehring of requests, while sequences with different orderings may be

handled properly. The argument now is that on the average data describing more complex situations

will be harder to process, and therefore more prone to the manifestation of a software fault.

This representation dependency of the complexity of the world seen by the software, and its
relevance to software reliability manifestations has however some potential advantages. Consider a

piece of code that operates on certain data structures in such a way that, the same code, fed with the

same input data, uses different internal representations in its data structures according to some

random factor. Then code replication to increase reliability makes sensel

Indeed, consider a software package operating over a variety of data structures such as lists,

queues, and arrays. Assume that the code has been written in such a way that data structure
initialization (and even perhaps allocation) is random. That is, no two initialization sequences lead to

the same representation of the same situation. This can be accomplished, for instance, by chosing

the header for the queues at random in a circular buffer. Consider now two copies of the same code

running in parallel in separate processors (or sequentially in the same processor). As the code is

feeded with external input data, both copies will use different representations in their internal data

structures. Thus, in some cases, one copy may manifest a software fault due to a particular
representation, while the other copy may be able of handling the same situation without problem.

The above arguments are highly speculative and their validation would require (at least) the design

of a complete experiment and background study as it has been done in the present thesis. However,

this potential approach to the design of reliable software has been presented here because it is a

natural extension of the methodology followed in this thesis.
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